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Abstract

In this thesis, we investigate the qualitative and quantitative analysis of nonlinear
parabolic equations arising from finance. First, we study the existence and uniqueness
of solutions of nonlinear partial integro-differential equations (PIDEs) arising from the
financial market. We consider Black–Scholes models for pricing options on underlying
assets following a Lévy stochastic process with jumps. The existence and uniqueness
results of the PIDE are presented in the scale of Bessel potential spaces using the
theory of abstract semilinear parabolic equations in high-dimensional spaces. As an
application in the one-dimensional space, we consider a general shift function arising
from nonlinear option pricing models taking into account a large trader stock-trading
strategy. We consider a PIDE, where the shift function may depend on a prescribed
large investor stock-trading strategy function. Second, we analyze problems arising
from stochastic dynamic optimization, which leads to a solution of a fully nonlinear
evolutionary Hamilton-Jacobi-Bellman (HJB) equation. We consider the HJB equa-
tion arising from portfolio optimization selection, where the goal is to maximize the
conditional expected value of the terminal utility of the portfolio. After a suitable trans-
formation, the fully nonlinear HJB equation is transformed into a quasilinear parabolic
equation whose diffusion function is obtained as the value function of a specific conic
programming problem. We employ the monotone operator technique, Banach’s fixed
point theorem, and Fourier transform to obtain the existence and uniqueness of a so-
lution to the general form of the transformed parabolic equation in a suitable Sobolev
space in an abstract setting. We also presented some financial applications of the
proposed result in one-dimensional space. Furthermore, the behavior of the solution
corresponding to the nonlinear HJB equation is studied. We analyze the behavior of
the solution with respect to two decision sets. Finally, we present numerical analyses
of the parabolic equations using deep learning. Specifically, we employ the physics-
informed deep operator network (PI-DeepONet) to approximate the solution operator
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of the parabolic equation associated with the HJB equation. Our qualitative analysis
shows that PI-DeepONet can effectively learn the solution operator of the associated
HJB equation.
Keywords: Hamilton-Jacobi-Bellman equation; Maximal monotone opera-
tor; Dynamic stochastic portfolio optimization; Lévy measure; Option pric-
ing; Bessel potential spaces; Deep learning, PI-DeepONet
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Abstrakt

V tejto práci sa zaoberáme kvalitatívnou a kvantitatívnou analýzou nelineárnych parabol-
ických rovníc pochádzajúcich z matematickej teórie financií. Najprv študujeme exis-
tenciu a jednoznačnosť riešení nelineárnych parciálnych integro-diferenciálnych rovníc
(PIDE) vznikajúcich vo finančnom modelovaní trhu. Uvažujeme Black–Scholes modely
pre oceňovanie opcií na podkladové aktíva, ktoré sledujú Lévyho stochastické procesy so
skokmi. Výsledky existencie a jednoznačnosti PIDE sú dokazované v škále Besselových
potenciálnych priestorov s pomocou teórie abstraktných semilineárnych parabolick-
ých rovníc vo viacrozmerných priestoroch. Ako aplikáciu v jednorozmernom priestore
uvažujeme všeobecnú funkciu posunu vyplývajúcu z nelineárnych modelov oceňovania
opcií zohľadňujúcich stratégiu obchodovania s akciami veľkého obchodníka. Uvažujeme
o PIDE, kde funkcia posunu môže závisieť od predpísanej funkcie stratégie obchodova-
nia s akciami veľkého investora. Po druhé, analyzujeme problémy vyplývajúce zo
stochastickej dynamickej optimalizácie, ktorá vedie k riešeniu plne nelineárnej evolučnej
Hamilton-Jacobi-Bellmanovej (HJB) rovnice. Uvažujeme HJB rovnicu, ktoré vyplýva z
dynamickej ptimalizácie portfólia, kde cieľom je maximalizovať podmienenú očakávanú
hodnotu konečnej užitočnosti portfólia. Po vhodnej transformácii je plne nelineárna
HJB rovnica transformovaná na kvázilineárnu parabolickú rovnicu, ktorej difúzna funk-
cia je získaná ako hodnotová funkcia konkrétneho kónického programovacieho prob-
lému. Používame techniku monotónneho operátora, Banachovu vetu o pevnom bode a
Fourierovu transformáciu, aby sme získali existenciu a jedinečnosť riešenia všeobecného
tvaru transformovanej parabolickej rovnice vo vhodnom Sobolevovom priestore v ab-
straktnom prostredí. Uviedli sme aj niektoré finančné aplikácie navrhovaného výsledku
v jednorozmernom priestore. Ďalej sa študuje správanie riešenia zodpovedajúceho ne-
lineárnej rovnici HJB. Analyzujeme správanie sa riešenia vzhľadom na dve rozhodova-
cie množiny. Nakoniec uvádzame numerické analýzy parabolických rovníc pomocou
hlbokého učenia. Konkrétne využívame fyzikálne informovanú sieť hĺbkových operá-
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torov (PI-DeepONet) na aproximáciu operátora riešenia parabolickej rovnice spojenej s
rovnicou HJB. Naša kvalitatívna analýza ukazuje, že PI-DeepONet sa dokáže efektívne
naučiť operátora riešenia súvisiacej rovnice HJB.

Kľúčové slová: Hamilton-Jacobi-Bellmanova rovnica; Maximálny monotónny op-
erátor; Dynamická stochastická optimalizácia portfólia; Lévyho miera; Cena opcie;
Besselove potenciálne priestory; Hlboké učenie, PI-DeepONet
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CHAPTER 1

Introduction

1.1 Objective

The objective of this thesis is to investigate the qualitative and quantitative analysis of
fully nonlinear partial integro-differential equations (PIDEs) of parabolic type arising
from finance. We consider a fully nonlinear Hamilton-Jaccobi-Belman (HJB) equation
describing portfolio optimization problems, as well as PIDE related to the nonlinear
Black–Scholes equation for pricing vanilla options. The nonlinear generalization of the
Black–Scholes and HJB equations can be transformed into the quasilinear parabolic
equation for the unknown function ϕ = ϕ(x, τ) representing either the Gamma function
of the portfolio ϕ = S∂2SV or relative risk aversion function ϕ = −∂2

xV
∂xV

, respectively
(see, Ševčovič [59]). The following equation describes the resulting quasilinear parabolic
equation:

∂tϕ = Lα(·, ϕ) + F (x, ϕ,∇ϕ), x ∈ Rn, t ∈ [0, T ), (1.1)

where L represent integral and differential operator (e.g., Laplacian); α is some suitable
value function. Our goal is to study the qualitative and quantitative properties of so-
lutions to such parabolic equations. First, we consider HJB equations with application
in optimal portfolio management under suitable assumptions on the utility function
and establish its solution in suitable Sobolev spaces. Then, for the parabolic equation
for option pricing, we consider nonlocal nonlinear equation corresponding to the non-
linear Black–Scholes equation and establish its solution in higher-dimensional space
in Bessel potential space. Our approaches to proving the existence and uniqueness of
solutions are two-fold. First, we employ the monotone operator technique to estab-
lish the solution of the HJB equation in Sobolev spaces. For the PIDE corresponding
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to the nonlinear Black–Scholes equation, we employ the theory of abstract semilinear
parabolic equations to prove the existence and uniqueness of solutions in the scale of
Bessel potential spaces.

1.2 Background

In the past decades, the theory of differential equations has been extensively stud-
ied, and the methods for their solutions strongly depend on the specific equation. A
comprehensive study on these methods are presented in [7, 21, 54]. Solving parabolic
equations using the theory of monotone operators is a powerful mathematical approach
that has gained significant attention in the field of partial differential equations [66].
This method, often referred to as the monotone operator technique, offers a systematic
framework for tackling a wide range of parabolic equations with various boundary and
initial conditions. A monotone operator is a mathematical concept used to describe
operators that preserve the order of elements in a given space. It plays a crucial role
in the study of parabolic equations because it ensures that the equation is well posed
and has a stable solution. The monotone operator technique involves transforming the
original parabolic equation into an equivalent fixed-point problem involving a mono-
tone operator. The idea is to construct a sequence of approximations that converges to
the solution of the original equation. The main advantages of monotone operator tech-
niques are as follows. The monotone operator technique guarantees the well-posedness
of the solution, ensuring that the solution exists, is unique, and varies continuously
with respect to the data. Most times, this technique leads to stable numerical algo-
rithms for solving parabolic equations. This stability is essential for accurate and robust
numerical solutions. Furthermore, the sequence of approximations generated by the
monotone scheme converges to the true solution of the parabolic equation under certain
conditions. Although this approach is valuable as it combines mathematical rigor with
practical applicability, like any mathematical method, its success depends on careful
application, analysis, and adaptation to specific problems. Besides the monotone op-
erator technique, the semigroup theory provides a powerful framework for studying
the existence, uniqueness, and regularity of solutions to various PDEs, including the
parabolic type. Some notable works and references that contribute to this field can be
found in [7, 21, 27]. A semigroup is a mathematical structure that consists of a set
(often functions) and an associative binary operation that combines elements of the
set. Semigroup of linear operator theory provides a systematic approach to solving
parabolic PDEs by viewing them as evolution equations [52]. In this context, the semi-
group represents the evolution operator that maps the initial condition at the initial
time to the solution at any later time. In general, the semigroup associated with a
parabolic PDE should satisfy some key properties. The semigroup should be positive
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preserving, i.e., it should map nonnegative initial conditions to nonnegative solutions.
It should be Hölder continuous in the underlying Banach space, i.e., it should be con-
tinuous with respect to the Hölder norm in the underlying Banach space, ensuring that
small changes in the initial condition lead to small changes in the solution. Inspired
by the above properties, in the qualitative part of this thesis, we employ the monotone
operator technique and semigroup theory to establish the existence and uniqueness of
solutions to the parabolic equation (1.1).

As mentioned above, the parabolic equation (1.1) describes the nonlinear Black–
Scholes equation for option pricing as well as the nonlinear HJB equation for selecting
optimal portfolios [59]. Because of its simplicity and the existence of an analytical for-
mula to price derivative securities, the classical Black–Scholes model has been widely
used in finance, especially for pricing vanilla options. This model usually relies on
restrictive assumptions like market completeness and the assumption that the under-
lying asset price follows a geometric Brownian motion. However, the assumption that
an investor can trade a large amount of assets without affecting the underlying asset
price is usually not satisfied, especially in illiquid markets. Additionally, the linear
Black–Scholes equation usually leads to an undesirable property since it provides a
solution corresponding to a perfectly replicated portfolio. For this reason, several gen-
eralizations have been made to relax some of these assumptions. For example, these
assumptions were relaxed by (i) considering the presence of transaction costs [6, 42], (ii)
feedback and illiquid market effects due to large traders choosing given stock-trading
strategies [26, 25, 65], and (iii) the risk from the unprotected portfolio [30]. In these
generalizations, the constant volatility was replaced by a nonlinear function depending
on the second derivative of the option price. Frey and Stremme derived a nonlinear
Black–Scholes model that plays an essential role in the class of the generalized Black–
Scholes equation with such a nonlinear diffusion function [24, 26, 30]. In this model,
the asset dynamics considers the presence of feedback effects due to a large trader
choosing his stock-trading strategy [65]. Another important direction in generalizing
the original Black–Scholes equation arises from the fact that the sample paths of a
Brownian motion are continuous. However, the real stock price of a typical company
exhibits random jumps on the intraday scale, making price trajectories discontinuous.
In the classical Black–Scholes model, the logarithm of the price process follows a nor-
mal distribution. However, the empirical distribution of stock returns shows fat tails.
When calibrating the theoretical prices to the market prices, the implied volatility is
not constant as a function of strike price nor a function of time to maturity, contra-
dicting the prediction of the Black–Scholes model. On the other hand, the models
with jumps and diffusion can solve the problems inherent to the Black–Scholes model.
Jump models also play an essential role in the option market. In the Black–Scholes
model, the market is complete, implying that every payoff can exactly be replicated;
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meanwhile, there is no perfect hedge in jump models, making the way of options not
redundant.

Recently, the relationships between more general nonlocal operators and jump pro-
cesses have been widely investigated. For instance, there is an actual connection be-
tween the solution to PIDEs and properties of the corresponding Markov jump process
(c.f., Abels and Kassmann [2]; Florescu and Mariani [23]). Furthermore, the role of
PIDEs has also been recently investigated in various fields, such as pure mathematics,
biological sciences, and economics [3, 4, 73]. PIDE problems arising from financial
mathematics, especially from option pricing models, have been of great interest to
many researchers. In most cases, standard methods for solving these problems lead
to the study of parabolic equations. Mikulevičius and Pragaraustas [49] investigated
solutions of the Cauchy problem to the parabolic PIDE with variable coefficients in
Sobolev spaces. They employed their results to obtain solutions of the corresponding
martingale problem. Crandal et al. [28] employed the notion of a viscosity solution to
investigate the qualitative results. Soner et al. [14] and Barles et al. [8] extended and
generalized their results for the first and second-order operators, respectively. Florescu
and Mariani [23] employed the Schaefer fixed point argument to establish the existence
of a weak solution of the generalized PIDE. Amster et al. [58] used the notion of upper
and lower solutions to obtain the solution of such PIDEs. They proved the existence
of solutions in a general domain for multiple assets and the regime-switching jump-
diffusion model. Cont et al. [17] investigated the actual connection between option
pricing in exponential Lévy models and the corresponding PIDEs for European options
and those with single or double barriers. They discussed and established the conditions
for which prices of options are classical solutions of the corresponding PIDE.

In this thesis, we establish a certain PIDE for option pricing in illiquid market
by assuming that the stock price follows a certain dynamics. We also present the
existence of a solution and localization results of the associated PIDE in some suitable
spaces. The qualitative properties of solutions to the nonlocal linear and nonlinear
PIDE are investigated and established in the scale of Bessel potential spaces using
the theory of abstract semilinear parabolic equation. Regarding the PIDE for option
pricing, we relax the liquid and complete market assumptions and extend the models
that study market illiquidity to the case where the underlying asset price follows a
Lévy stochastic process with jumps. As a result, we establish the corresponding PIDE
for option pricing under suitable assumptions. Then, the qualitative properties of
solutions to nonlocal linear and nonlinear PIDEs are presented using the theory of
abstract semilinear parabolic equation in the scale of Bessel potential spaces. The
existence and uniqueness of solutions to the PIDE for a general class of the so-called
admissible Lévy measures satisfying suitable growth conditions at infinity and origin
are also established in multidimensional space. Additionally, the qualitative properties
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of solutions to the generalized PIDE are investigated by considering a general shift
function arising from nonlinear option pricing models, which takes into account a large
trader stock-trading strategy with the underlying asset price following the Lévy process.
Various numerical experiments are presented to illustrate the influence of a large trader
and the intensity of jumps in the option price.

Furthermore, it is known that the fully nonlinear HJB equation plays an essential
role in finance. For example, it gives the necessary and sufficient conditions for opti-
mal control with respect to the value function [60]. Recent studies on such parabolic
equations employed the method of the upper and lower solution [54, 70]. Specifically,
Macová and Ševčovič [45] analyzed the solutions to a fully nonlinear parabolic equation
representing the problem of optimal portfolio construction. They showed the formu-
lation of the problem of optimal stock-to-bond proportion in the management of a
pension fund portfolio in terms of the solutions to the HJB equation. Federicol et
al. [22] investigated the utility maximization problem for an investment-consumption
portfolio when the current utility depends on the wealth process - regularity of solutions
to the HJB equation. They defined a dual problem and treated it by means of dynamic
programming and showed that the viscosity solutions of the associated HJB equation
belong to a class of smooth functions. Ishimura and Ševčovič [29] recently analyzed
solutions to the HJB equation (4.7) with range bounds on the optimal response vari-
able. They constructed monotone traveling wave solutions and identified parametric
regions for which the traveling wave solutions have positive or negative wave speeds.
More recently, Abe and Ishimura [1] introduced the Riccati transformation method for
solving the full nonlinear HJB equations, which was later generalized by Kilianová and
Ševčovič [35]. In their later study, Kilianová and Ševčovič [35] investigated solutions of
a fully nonlinear HJB equation for a constrained dynamic stochastic optimal allocation
problem. However, no attempt has been made to solve the fully nonlinear HJB equa-
tion arising in portfolio optimization in a suitable Sobolev space using the monotone
operator technique. In this thesis, we also study the qualitative and quantitative prop-
erties of the HJB equation with application in finance in high dimensions using the
monotone operator argument. We employ the monotone operator technique because
it plays a crucial role in establishing constructive proofs for existence theorems and
leads to various comparison results, which are effective tools for studying qualitative
properties of solutions. We present the existence and uniqueness of the solution to the
nonlinear HJB equation arising from stochastic dynamic programming using a combi-
nation of the monotone operator technique, Fourier transform, and Banach fixed point
argument. We consider the fully nonlinear HJB equation arising from the portfolio
selection problem, where the goal of an investor is to optimize the conditional expected
value of the terminal utility of the portfolio. Such a nonlinear parabolic equation is
presented in an abstract setting, which can also be viewed as a nonlinear PIDE. The
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existence result of such a nonlinear parabolic equation presented in an abstract setting
is established in Sobleve spaces with some shift/perturbation in the main operator of
the underlying equation. This Cauchy problem for the nonlinear parabolic equation
corresponds to equation (1.1) using a suitable Ricatti transformation.

Numerous studies have shown that most differential equations arise from many
scientific and engineering fields for modeling physical phenomena. However, most of
these differential equations are analytically intractable, especially in high-dimensional
space. In the numerical approach of solving most differential equations, several tradi-
tional numerical methods, such as the finite volume method, finite difference method,
finite element method, and spectral methods (e.g., Fourier-spectral method), have been
widely used to solve complicated parabolic equations, including those with complex ge-
ometries, nonlinearities, and variable coefficients. The choice of a numerical method
usually depends on various factors, including the complexity of the problem, the ge-
ometry, the stability requirements, and computational resources. Complex parabolic
equations often require careful consideration of the numerical scheme, as well as tech-
niques to handle nonlinearities, boundary conditions, and stability issues. Although
these traditional methods, such as the finite difference method, finite elements, fi-
nite volume method, method of lines, spectra methods, and adaptive mesh refinement
methods, have provided accurate and reliable results, they require high computational
resources, and a slight change in the parameter of the equation could lead to indepen-
dent simulations. Despite the fact that these classical methods have been extensively
studied, their convergence properties have not been properly investigated. Addition-
ally, in the numerical solution of partial differential equation (PDE) problems through
the discretization process using finite difference approximations, the algebraic systems
generated are finalized using an iterative method. In order to overcome these chal-
lenges, many researchers have replaced traditional numerical discretization methods
with artificial neural networks (ANNs) to approximate the PDE solution. Recently,
deep neural networks (DNNs) have been widely used to solve classical applied mathe-
matical problems, including PDEs, utilizing machine learning and artificial intelligence
approaches [33]. The neural networks and deep learning methods have gained signifi-
cant attention for solving various PDEs, especially of parabolic type, because of their
capability to approximate and solve problems with complex geometries. Due to signif-
icant nonlinearities, convection dominance, or shocks, some PDEs are difficult to solve
using standard numerical approaches. Recent studies have shown that deep learning is
a promising method for building meta-models for fast predictions of dynamic systems.
In particular, NNs have proven to represent the underlying nonlinear input-output re-
lationship in complex systems. To this end, deep learning has recently emerged as a
new paradigm of scientific computing thanks to the universal approximation theorem
and great expressivity of neural networks [15]. Solving parabolic PDEs that describe
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phenomena evolving over time with spatial dependencies, such as heat diffusion or op-
tion pricing in finance, can be challenging, but ANNs and deep learning methods offer
a promising approach. The usual approach of solving any parabolic PDE requires find-
ing a function that satisfies the equation and its boundary/initial conditions. ANNs
can be used to represent this unknown function. The input to the network can be
the spatial coordinates and time, and the output can be the value of the solution at
that point in space and time. In most cases of training the network, labeled data are
usually required, which consists of input points (spatial and temporal coordinates) and
corresponding known solution values. These training data are usually generated by dis-
cretizing the PDE domain and solving the PDE numerically using traditional methods
to obtain ground truth solutions. The advantages of using ANNs and deep learning for
solving parabolic PDEs include their ability to handle complex geometries and adapt
to a wide range of boundary and initial conditions. They can also be faster than tra-
ditional numerical methods in most cases. Although ANNs offer promising solutions
for solving parabolic equations, they come with several limitations and challenges. For
instance, ANNs are often considered as “black-box” models, i.e., one may not really
know how all the individual neurons work together to obtain the final output. This
makes it challenging to interpret the learned solution and gain insights into the under-
lying physical processes. This lack of interpretability can be a significant drawback in
scientific and engineering applications where understanding physics is crucial.

In an attempt to approximate the solution of PDEs, several researchers employed
the deep Galerkin method [33], which employs DNNs to solve high-dimensional PDEs.
Another approach called the deep Ritz method [72], which defined the loss as the en-
ergy of the solution of the problem, was also introduced. More recently, a more suitable
technique called physics-informed neural networks (PINNs) was introduced to approx-
imate the solution of PDEs [57]. PINN is a special class of ANNs that combine deep
learning techniques with domain-specific knowledge. The primary aim of PINNs is to
harness the power of neural networks while ensuring that the solution adheres to the
underlying physics of the problem. PINNs are designed to embed the governing physics
of a problem directly into the neural network architecture and loss function. This is
usually achieved by adding terms to the loss function that enforce PDE constraints
and boundary/initial conditions. One of the key advantages of PIN is that it incorpo-
rates prior knowledge about the underlying physics, making it well-suited for problems
where the governing equations are known but difficult to solve analytically. Although
PINN offers several advantages, it comes with many limitations. For example, PINNs
are more effective at interpolation within the range of training data, but extrapolating
to regions far from the training data can be challenging. In other to overcome these
limitations, several researchers have recently introduced and analyzed different variants
of PINNs [31, 34, 74]. For instance, Kharazmi et al. [34] proposed a variant of PINN
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called a variational PINN (hp-VPINN) in which a Galerkin approach is used on col-
location points. Many other collocation-based PINN approaches, such as conservative
PINN [31], were also introduced. Another variant of PINN called physics-constrained
neural networks (PCNNs) [74] was also introduced. Unlike PINN, which incorporates
both the PDE and boundary/initial conditions (soft BC) into the training loss function,
PCNNs are data-free neural networks that enforce the initial and boundary conditions
(hard BC) through a custom neural network architecture while embedding the PDE
in the training loss. Furthermore, PINN has achieved great success than its variants,
which can be seen from the significant increase in the PINN citation [57]. Although
PINNs are faster than traditional numerical methods, they also have some limitations
in terms of changes in the underlying parameters governing the PDE. In other words,
a slight change in the underlying parameters could result in a retraining of the model.
This is also applicable to traditional numerical methods in which a slight change in the
input parameter will lead to a new independent simulation.

To overcome the shortcomings of PINNs, the concept of deep operator network
(DeepONet) was further introduced [44]. DeepONet is a neural network-based model
that can learn linear and nonlinear PDE solution operators with a small generaliza-
tion error via universal approximation theorem for operators. DeepONet consists of
two parts: a deep neural network that learns the solution of the PDE and an oper-
ator network that enforces the PDE at each iteration. The operator network acts as
a constraint to ensure that the neural network outputs satisfy the underlying PDE.
DeepONet maps input functions with infinite dimensions to output functions with in-
finite dimensions. It can efficiently and accurately solve PDE with any initial and
boundary conditions without retraining the network. Moreover, several authors have
introduced various forms of DeepONet, including DeepONet with proper orthogonal
decomposition (POD-DeepONet), Bayesian DeepONet, neural operator with coupled
attention, multiscale DeepONet, and physics-informed DeepONet (PI-DeepONet) (see
[31, 34, 44, 74] and the references therein). PI-DeepONet approximates the PDE solu-
tion operator using two networks: one network that encodes the discrete input function
space (i.e., branch net) and one that encodes the domain of the output functions (i.e.,
trunk net) (cf. [44]). PI-DeepONet is a variant of DeepONet that incorporates known
physics (or governing equations) into the neural network architecture. It can effec-
tively approximate the solution of different PDEs without requiring a large amount
of training data by introducing a regularization mechanism that biases the outputs of
DeepONet models to ensure physical consistency. PI-DeepONet can efficiently solve
parametric linear and nonlinear PDEs compared to other variants of PINN since it
can take source term parameters (including other parameters) as the input variables.
This approach can improve the accuracy of the solution and reduce the amount of data
needed for training. Moreover, PI-DeepONet can break the curse of dimensionality in
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the input space, making it more suitable than other traditional approaches.
Inspired by the above development and studies, in the numerical part of this the-

sis, we employ deep learning techniques to solve the parabolic equation corresponding
to the Cauchy problem of the underlying HJB equation. Specifically, we employ the
PI-DeepONet to approximate the solution operator of the HJB equation. We con-
sider a fully nonlinear HJB equation arising from the stochastic optimization problem,
where the goal of an investor is to maximize the conditional expected value of the
terminal utility of a portfolio. PI-DeepONet is used to learn the optimal portfolio
strategy for an investor by approximating the solution operator of the transformed
quasilinear equation. The HJB equation is first transformed using the Ricatti trans-
form introduced by Ishimura and Ševčovič [29] and Ševčovič and Kilianová [35] into a
quasilinear parabolic equation, which is then approximated using PI-DeepONet. The
neural network architecture is trained using a combination of supervised learning and
physics-informed learning. The supervised learning part involves minimizing the mean
squared error between the neural network predictions and a set of training data points.
The physics-informed learning part involves enforcing the PDE constraint using the op-
erator network at each iteration. This results in a more accurate solution that satisfies
the underlying PDE, even when the input parameters governing the PDE change.

1.3 Thesis Overview

1.3.1 Detailed Structure

The remainder of this thesis is organized as follows. Chapter 2 discusses the concept of
monotone operators, its characterizations in function spaces, and existence results for
parabolic equations. The concept of semigroup theory for solving parabolic equations
is also presented. Chapter 3 presents the qualitative analysis of nonlinear PIDEs (1.1)
associated with the Black–Scholes equation for pricing options in multidimensional
cases. The existence and uniqueness of the solution to this equation are established in
the scale of Bessel potential spaces using the theory of abstract semilinear parabolic
equation. Chapter 4 presents existence results for the nonlinear parabolic equation
(1.1) associated with the HJB equation for selecting optimal portfolios. The behaviors
of solutions to such parabolic equations with respect to different decision sets are also
discussed. In Chapter 5, we present a detailed discussion of traditional numerical
methods for solving PDEs. Chapter 6 presents the numerical analysis of the parabolic
equation associated with the HJB equation using PI-DeepONet. Finally, Chapter 7
presents the conclusion and future studies.
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CHAPTER 2

Monotone Operators and their Properties

This chapter is devoted to the study of monotone operators, their characterizations
in function spaces, and existence results for nonlinear parabolic partial differential
equations. Specifically, we discuss the theory of Banach spaces, Sobolev spaces, Hölder
space, and the scale of Bessel potential spaces.

2.1 Preliminaries and basic definitions

In this section, we present the basic notions, definitions, and properties of function
spaces used in this thesis. Specifically, we discuss the theory of Banach spaces, Sobolev
spaces, Hölder spaces, and the scale of Bessel potential spaces.

Let V be a complete normed vector space (i.e., Banach space) with the norm ‖ · ‖.
We denote the dual space of V by V ′, as the space of all continuous linear functional
on V , and the norm of V ′ is defined by

‖f‖V ′ = sup
‖x‖≤1
x∈V

|f(x)| = sup
‖x‖≤1
x∈V

f(x)

for any f ∈ V ′. In the sequel, we shall denote the duality pairing between the spaces
V and V ′ by 〈., .〉, i.e., the value of a functional F ∈ V ′ at u ∈ V is denoted by 〈F, u〉.
Note that the bidual or the second dual V ′′ can also be constructed in a similar manner.
Moreover, let f ∈ V ′ and x ∈ V be given, we can define φ(x) ∈ V ′′ by φ(x)(f) ≡ f(x),
which fulfills ‖φ(x)‖ ≤ ‖x‖. For each x ∈ V , we can identify f ∈ V ′ with f(x) = ‖x‖
and ‖f‖ = 1, which implies that ‖φ(x)‖ = ‖x‖. Clearly, the function φ is linear, which
implies that the map φ : V → V ′′ is a linear isometry of V onto a closed subspace of
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V ′′, denoted by V ↪→ V ′′. Now, if φ is onto the whole space V ′′, then V is reflexive. In
a more general setting, a reflexive Banach space is defined as follows.

Definition 1. [13] Let V be a Banach space and let j : V → V ′′ be a cannonical
injection from V into V ′′. Then, V is said to be reflexive if j is surjective, i.e.,
j(V ) = V ′′.

The following remarks are consequences of the above definition.

Remark 1. (i) If V is reflexive, then we can identify V ′′ with V .

(ii) A closed subspace and dual space of a reflexive space is reflexive.

(iii) Every finite-dimensional space is reflexive since dimV = dimV ′ = dimV ′′.

The following theorem presents the necessary and sufficient condition for a Banach
space to be reflexive.

Theorem 1. [7, 13, 66] A Banach space is reflexive if and only if it is sequentially
weakly compact, i.e., every bounded sequence contains a weakly convergent subsequence.

For more details on the proof and application of Theorem 1, see [7, 11, 13, 66].

Definition 2. [13] A metric space X is separable if it contains a countable dense
subset.

It is worth noting that every finite-dimensional space is separable, and several im-
portant spaces used in the analysis of differential equations are separable and reflexive.

Next, we define and characterize some important spaces used in this thesis. Let
Ω be an open Lebesgue measurable subset of Rn with smooth boundary ∂Ω and let
1 ≤ p ≤ ∞. Then, Lp(Ω) (1 ≤ p < ∞) is the set of equivalence classes of measurable
functions f : Ω → R such that

∫
Ω
|f(x)|pdx < ∞. Moreover, L∞(Ω) is the space

consisting of all essentially bounded function f : Ω → R such that |f(x)| ≤ C a.e on Ω

for some constant C <∞.

Remark 2. [13]

(i) Lp(Ω) spaces are reflexive (for 1 < p <∞) and separable (for 1 ≤ p <∞).

(ii) L∞(Ω) is neither reflexive nor separable.

Now, let us introduce some function spaces whose derivative belongs to Lp. First, we
denote the space of test functions on Ω by C∞

0 (Ω) (i.e., the class of all C∞ functions on
Rn with compact support), which is dense in every Lp(Ω) for 1 ≤ p <∞. Here, the sup-
port of a continuous function f : Rn → R is defined as suppf = {x ∈ Rn : f(x) 6= 0}.
Moreover, we introduce the Sobolev space of positive integer orders, consisting of real-
valued functions defined on Ω that satisfy some integrability properties with their
distributional derivatives.
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Definition 3. [66] Let Ω be an open subset of Rn, 1 ≤ p ≤ ∞, and 0 ≤ m(integers).
Then, Wm,p(Ω) is a linear space of all functions f ∈ Lp(Ω) for which ∂αf ∈ Lp(Ω) for
all multi-indices α = (α1, · · · , αn) of nonegative integers with |α| = α1+ · · ·+αn ≤ m,
where ∂α = ∂α1

1 ∂α2
2 · · · ∂αn

n . Such a space is called a Sobolev space of order m and
integrability p with the norms

‖f‖m,p = (
∑
|α|≤m

‖∂αf‖pLp(Ω))
1/p, 1 ≤ p <∞,

‖f‖m,∞ = max
|α|≤m

‖∂αf‖L∞(Ω).

From the above definition, it is clear thatW 0,p(Ω) = Lp(Ω). Note that if 1 ≤ p <∞,
then C∞(Ω) ∩ Wm,p(Ω) is dense in Wm,p(Ω). In other words, smooth functions are
dense in Wm,p(Ω). For more details, see [66, Theorem 4.1]. The following remark
demonstrates the elementary properties of Sobolev spaces.

Remark 3. [13, 66]

(i) Wm,p(Ω) is a Banach space.

(ii) if 1 ≤ p <∞, then Wm,p(Ω) is separable.

(iii) if 1 < p <∞, then Wm,p(Ω) is reflexive.

(iv) Wm,2(Ω), usually denoted as Hm(Ω), is a Hilbert space with the scalar product
(u, v) :=

∑
|α|≤m

∫
Ω
DαfDαgdx, ∀f, g ∈ Wm,2(Ω), where D denotes the derivative

in the sense of distribution.

Moreover, the following continuous embeddings hold:

Wm,p(Ω) ↪→ Lq(Ω) if 1

p
≥ 1

q
≥ 1

p
− m

n
> 0,

Wm,p(Ω) ↪→ Ck(Ω) if m− n

p
> k,

where the last embedding indicates that every function in Wm,p(Ω) has a continuous
representation for m− n

p
> 0.

Next, we introduce a class of Sobolev-type spaces of noninteger order. Let us recall
the convolution operator (G ∗ f)(x) =

∫
Rn G(x− y)f(y)dy.

Definition 4. Let 1 < p < ∞, α ≥ 0. Then, the Bessel potential space, denoted as
L p

α (Ω), consists of all functions ϕ such that ϕ = Gα ∗ f for some f ∈ Lp(Ω), where
Gα is the Bessel kernel of order α given by

Gα(x) =
1

(4π)n/2Γ(α/2)

∫ ∞

0

y−1+(α−n)/2e−(y+|x|2/(4y))dy
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for x ∈ Rn/{0}.

The Bessel potential space L p
α (Ω) is a natural extension of the Sobolev space

Wα,p(Ω). They are Banach spaces for 1 ≤ p < ∞. The Bessel potential space L p
α (Ω)

can be constructed by interpolating the Sobolev spaces of integral order or using the
Fourier transformation. If it is constructed using the Fourier transformation, then its
norm is given as follows:

‖u‖L p
α
= ‖F−1[(1 + |ξ|2)α/2F(u)(ξ)]‖Lp ,∀u ∈ L p

α ,

where F−1 is the inverse transformation and |ξ| = (ξ21 + · · · + ξ2n)
1/2. The following

remark shows the basic properties of the Bessel kernel Gα, α > 0.

Remark 4. Let f ∈ Lp(Rn) and the Fourier transform of f be given as

f̂(ξ) =

∫
Rn

f(y)e−2πixydy.

Then,

(i) Gα is monotone decreasing, nonnegative, and
∫
Rn Gα(y)dy = 1.

(ii) Ĝα(ξ) = (1 + |ξ|2)−α/2, ξ ∈ Rn.

We remark here that the Bessel potential spaces are separable for 1 ≤ p <∞, reflexive
for 1 < p <∞, and the Hilbert spaces for p = 2.

2.2 Analytic Semigroups

This section presents the basic definitions and characterization of analytic semigroup
used in this thesis.

Definition 5. [27, Definition 1] An analytic semigroup is a family of bounded linear
operators {S(t), t ≥ 0} in a Banach space X satisfying the following conditions:

(i) S(0) = I, S(t)S(s) = S(s)S(t) = S(t+ s), for all t, s ≥ 0;

(ii) S(t)u→ u when t→ 0+ for all u ∈ X;

(iii) t→ S(t)u is a real analytic function on 0 < t <∞ for each u ∈ X.

The associated infinitesimal generator A is defined as follows: Au = limt→0+
1
t
(S(t)u−

u), and its domain D(A) ⊆ X consists of elements u ∈ X for which the limit exists in
the space X.
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Definition 6. [27] Let Sa,ϕ = {λ ∈ C : ϕ ≤ arg(λ− a) ≤ 2π − ϕ} be a sector of com-
plex numbers. A closed densely defined linear operator A : D(A) ⊂ X → X is called a
sectorial operator if there exists a constant M ≥ 0 such that

‖(A− λ)−1‖ ≤M/|λ− a|

for all λ ∈ Sa,ϕ ⊂ C \ σ(A), where σ(A) denotes the spectrum of the operator A.

λℜ

,aS ϕ

λℑ

( )AσΓ
ϕa

Figure 2.1: Sector Sa,ϕ in the complex plane [61]

Note that if A is a bounded linear operator on a Banach space, then A is sectorial.
Moreover, if A is a self-adjoint densely defined operator in a Hilbert space and bounded
below, then A is sectorial.

Suppose an operator A is sectorial in a Banach space X, then −A is a generator of
an analytic semigroup

{
e−At, t ≥ 0

}
acting on X (c.f., [27, Chapter I]). For any γ > 0,

we can define the operator A−γ : X → X as

A−γ =
1

Γ(γ)

∫ ∞

0

ξγ−1e−Aξdξ.

Then, the fractional power space Xγ = D(Aγ) is the domain of the operator Aγ =

(A−γ)−1, i.e.,
Xγ =

{
u ∈ X : ∃f ∈ X, u = A−γf

}
, (2.1)

with the norm ‖u‖Xγ = ‖Aγu‖X = ‖f‖X . Moreover, we have continuous embedding:
D(A) ≡ X1 ↪→ Xγ1 ↪→ Xγ2 ↪→ X0 ≡ X, for 0 ≤ γ2 ≤ γ1 ≤ 1.

According to [27, Section 1.6], A = −(σ2/2)∆ is a sectorial operator in the Lebesgue
space X = Lp(Rn) for any p ≥ 1, n ≥ 1, and D(A) ⊂ W 2,p(Rn), where in our applica-
tion σ2 denotes historical volatility, and ∆ is the Laplacian. Thus, it follows from [67,
Chapter 5] that the space Xγ, γ > 0, can be identified with the Bessel potential space
L p

2γ(Rn), where
L p

2γ(Rn) := {u ∈ X : ∃f ∈ X, u = G2γ ∗ f}.
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and G2γ is the Bessel potential function. The norm of u = G2γ ∗ f is given by ‖u‖Xγ =

‖f‖Lp . The space Xγ is continuously embedded in the fractional Sobolev-Slobodeckii
space W 2γ,p(Rn) (c.f., [27, Section 1.6]).

2.3 Elementary properties of monotone operators

This section presents and discusses some elementary properties of monotone operators
used in this thesis.

Definition 7. Let E and F be two Banach spaces. An unbounded linear operator from
E into F is a linear map A : D(A) ⊂ E → F defined on a linear subspace D(A) ⊂ E

with values in F , where D(A) is the domain of A. Moreover, the operator A is bounded
(or continuous) if D(A) = E and there exists a constant C ≥ 0 such that

‖Au‖ ≤ C‖u‖, ∀u ∈ E.

Now, suppose H is a Hilbert space and A : D(A) ⊂ H → H is an unbounded linear
operator with D(A) = H, in which H ′ is identified with H. Then, A∗ can be identified
as an unbounded linear operator in H. Moreover,

(i) A is symmetric if (Au, v) = (u,Av),∀u, v ∈ D(A).

(ii) A is self-adjoint if D(A∗) = D(A) and A∗ = A.

It is worth noting that the notion of symmetric and self-adjoint operators coincides if A
is a bounded linear operator. Meanwhile, if A is unbounded, there is a slight difference
between symmetric and self-adjoint operators. Generally, any self-adjoint operator is
symmetric, but the converse is false. An operator A is symmetric if and only if A ⊂ A∗,
i.e., D(A) ⊂ D(A∗). Moreover, if A is maximal monotone, then A is symmetric if and
only if A is self-adjoint (see [13, Proposition 7.6 1]). Such an unbounded operator A is
said to be accretive if (Au, u) ≥ 0, ∀u ∈ D(A), and it is m− accretive if, in addition,
Rg(A+ I) = H, where I denotes the identity map.

Next, we introduce and discuss the notion of monotone operators and their funda-
mental properties in a reflexive Banach space.

Definition 8. Let V be a reflexive Banach space and A : V → V ′ be an operator, and
〈., .〉V ′,V be the scalar duality in V . Then, A is

(i) monotone if 〈A(u)−A(v), u− v〉 ≥ 0,∀u, v ∈ V ;

(ii) hemicontinuous if for each u, v ∈ V , the real-valued function t 7→ A(u+ tv)(v) is
continuous;
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(iii) type M if un ⇀ u,A(un)⇀ f , and lim supAun(un) ≤ f(u) implies A(u) = f ;

(iv) strictly monotone if 〈A(u)−A(v), u− v〉 > 0, for u 6= v in V ;

(v) strongly monotone if there exists a constant k > 0 such that 〈A(u)−A(v), u−v〉 ≥
k‖u− v‖2V ,∀u, v ∈ V ;

(vi) coercive if 〈A(u),u〉
‖u‖V

→ ∞ as ‖u‖V → ∞;

(vii) maximal monotone if it is monotone and A(u) = f if 〈A(v)−f, u−v〉 ≥ 0,∀v ∈ V .

From the above definitions, we deduce that the operator A : V → V ′ is demicon-
tinuous if it is type M and bounded and type M if it is hemicontinuous and monotone.
According to Browder and Rockafellar [66], monotonicity implies local boundedness,
which means that for monotone operators, demicontinuous and hemicontinuity are
equivalent. Furthermore, strong monotonicity implies coerciveness. The definition of
maximal monotone operator simply means no proper monotone extension. It is worth
noting that monotonicity and hemicontinuity imply maximal monotone, which in turn
implies type M . The monotonicity and maximal monotonicity of subdifferential of a
function can be characterized as follows. If a function is convex and proper, then its
subdifferential is monotone [51]. Moreover, if a function is convex, closed, and proper,
then its subdifferential is maximal monotone.

2.4 Existence results for parabolic equations

This section is devoted to the characterization of solutions of parabolic differential
equations for monotone operators.

Let V be a reflexive Banach space with dual V ′, and let V = Lp((0, T );V ) for
1 < p <∞, with a dual V ′ = Lp((0, T );V ′). Suppose H is a Hilbert space in which its
dual is identified by the Riesze representation. Assume that V is dense and continuously
embedded in H. In other words, V,H, and V ′ satisfy the Gelfand triple, i.e., V ↪→
H ↪→ V ′. Define the mapping A : V → V ′ and let u0 ∈ H, f ∈ V ′. Now, consider the
Cauchy problem of finding u ∈ V such that

∂τu+A(u) = f in V ′, u(0) = u0. (2.2)

Since f ∈ V ′ and A(u) ∈ V ′, then u′ ∈ V ′. This indicates that u is continuous into H,
and the condition u(0) = u0 makes sense. Then, the following results hold.

Theorem 2. [66] Assume that V,H, and V satisfy the above settings. Suppose the
operator A : V → V ′ is given such that its realization in V is of type M , bounded, and
coercive with

〈A(u), u〉 ≥ ‖u‖pV , u ∈ V .
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Then, for each f ∈ V, and u0 ∈ H, there exists a unique solution to the Cauchy problem
(2.2).

Proof: The proof of Theorem 2 is based on the Galerkin method. For more details,
see [7, 66]. The next lemma considers the assumption on the operator A : V → V ′,
which leads to the corresponding assumption on its realization in V . Without loss of
generality, also denote the realization in V as A.

Lemma 1. [13, 66]

(i) Suppose A : V → V ′ is demicontinuous, then for each measurable function
ω : [0, T ] → V , A(ω(·)) : [0, T ] → V ′ is also measurable.

(ii) Suppose also that A is bounded with

‖A(u)‖ ≤ C‖u‖p−1, u ∈ V .

Then, its realization A : V → V ′ is demicontinuous.

(iii) Moreover, A is V−monotone if and only if its realization is V- monotone.

Remark 5. We note here that Theorem 2 also holds and the solution of (2.2) is unique
if A : V → V ′ is monotone, hemicontinuous, bounded, and coercive with an estimate
on V . This notion can then be extended to cover a family of such operators and
related Cauchy problems. This scenario is described with the relaxation of the coercive
assumption in Theorem 3.

Theorem 3. [7, 66] Let V be a separable reflexive Banach space, dense and continuous
in a Hilbert space H which is identified with its dual, so V ↪→ H ↪→ V ′. Let p ≥ 2 and
set V = Lp((0, T );V ). Assume a family of operators A(τ, .) : V → V ′, 0 ≤ τ < T , is
given such that

(i) for each u ∈ V , the function A(., u) : [0, T ] → V ′ is measurable,

(ii) for a.e τ ∈ [0, T ], the operator A(τ, .) : V → V ′ is monotone, hemicontinuous and
bounded by ‖A(τ, u)‖ ≤ C(‖u‖p−1+k(τ)), u ∈ V, 0 ≤ τ < T, where k ∈ Lp′(0, T ),

(iii) and there exists λ > 0 such that 〈A(τ, u), u〉 ≥ λ‖u‖p − k(τ), u ∈ V, 0 ≤ τ < T.

Then for each f̃ ∈ V ′ and u0 ∈ H, there exists a unique solution u ∈ V of the Cauchy
problem

∂τu(τ) +A(τ, u(τ)) = f̃(τ) in V ′, u(0) = u0. (2.3)

The idea presented in Theorem 3 can also be extended to the case when A is a derivative
to obtain a strong solution of (2.3). This scenario can be seen as a nonlinear analog

19



of Theorem 3, which also corresponds to the solution obtained using the theory of
semigroup on H.

The following corollary shows that the coercive assumption can be relaxed elemen-
tary when the operator satisfies linear growth.

Corollary 1. Suppose that the assumptions of Theorem 3 are satisfied with p = 2 and
there exist λ, α > 0 such that

A(τ, v)(v) + λ‖V ‖2H ≥ α‖v‖2, a.e τ ∈ [0, T ], v ∈ V.

Then the Cauchy problem (2.3) has a unique solution for each f ∈ V and u0 ∈ H.

Theorem 3 forms the basis for establishing our existence and uniqueness results for
the fully nonlinear HJB equation (4.1), which corresponds to the nonlinear parabolic
equation (1.1).
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CHAPTER 3

PIDEs and their Applications to Option Pricing

This chapter is devoted to analyzing solutions of nonlinear partial integro-differential
equations (PIDEs) arising from financial modeling in multidimensional spaces. We
employ the theory of abstract semilinear parabolic equations in order to prove the ex-
istence and uniqueness of solutions in the scale of Bessel potential spaces. We consider
a wide class of Lévy measures satisfying suitable growth conditions near the origin
and infinity. The novelty of the chapter is the generalization of existing results in one
dimension to the multidimensional case. We consider Black–Scholes models for op-
tion pricing on underlying assets following a Lévy stochastic process with jumps. As
an application to option pricing in the one-dimensional space, we consider a general
shift function arising from a nonlinear option pricing model taking into account a large
trader stock-trading strategy. We prove the existence and uniqueness of a solution to
the nonlinear PIDE in which the shift function may depend on a prescribed large in-
vestor stock-trading strategy function (see Ševčovič and Udeani [62]). The main results
of this chapter are contained in our paper62

62D. Ševčovič and C. I. Udeani. Multidimensional Linear and Nonlinear Partial Integro-Differential
Equation in Bessel Potential Spaces with Applications in Option Pricing. Mathematics, 9 (13) (2021)
1463.
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3.1 Background and Motivation

In this chapter, we investigate the existence and uniqueness of a solution to a nonlocal
equation of the form:

∂u

∂τ
= ∆u+

∫
Rn

[u(τ, x+ z)− u(τ, x)− z · ∇u(τ, x)] ν(dz) + g(τ, x, u,∇u),(3.1)

u(0, x) = u0(x), x ∈ Rn, τ ∈ (0, T ).

Here, g is a given sufficiently smooth function; ν denotes a positive measure on Rn such
that its Radon–Nikodym derivative is a nonnegative Lebesgue measurable function h

in Rn, i.e., ν(dz) = h(z)dz.
The nonlocal equation (3.1) generalizes known results by Cruz and Ševčovič [18] to

the multidimensional space in the scale of Bessel potential Sobolev spaces. Moreover,
we analyze the following generalization of the nonlocal equation (3.1):

∂u

∂τ
=
σ2

2
∆u+

∫
Rn

[u(τ, x+ ξ)− u(τ, x)− ξ · ∇u(τ, x)] ν(dz) + g(τ, x, u,∇u), (3.2)

where ξ = ξ(τ, x, z) is a shift function, which may depend on the variables τ > 0, x, z ∈
R. An application for such a general shift function ξ can be found in nonlinear op-
tion pricing models considering a large trader stock-trading strategy with the under-
lying asset price dynamic following the Lévy process (c.f., Cruz and Ševčovič [19]). If
ξ(x, z) ≡ z, then (3.2) reduces to equation (3.1). The nonlinearity g often arises from
applications occurring in pricing, e.g., XVA derivatives (c.f., Arregui et al. [4, 5]) or
applications of the penalty method for American option pricing under a PIDE model
(c.f., Cruz and Ševčovič [18]).

The primary aim of this chapter is to investigate the solution of PIDE (3.1) in
the framework of Bessel potential spaces for a multidimensional case, n ≥ 1. These
spaces form a nested scale {Xγ}γ≥0 of Banach spaces satisfying Xγ1 ↪→ Xγ2 for any
1 ≥ γ1 ≥ γ2 ≥ 0, and X1 ≡ D(A), X0 ≡ X. The operator A is sectorial in the
space X with a dense domain D(A) ⊂ X (c.f., Henry [27]). An example of such
an operator is the Laplace operator, i.e., A = −∆ in Rn with the domain D(A) ≡
W 2,p(Rn) ⊂ X ≡ Lp(Rn). It is worth noting that if A = −∆, then Xγ is embedded in
the Sobolev–Slobodecki space W 2γ,p(Rn), which is a space consisting of all functions
such that 2γ-fractional derivative belongs to the Lebesgue space Lp(Rn) of p-integrable
functions (c.f., [27]). We investigate solutions to the PIDE (3.2) for a wide class of
Lévy measures ν satisfying suitable growth conditions near ±∞ and origin in a higher
dimensional space.
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3.2 Definitions and basic properties

This section presents some basic definitions and properties of Lévy measures, as well as
the notion of admissible activity Lévy measures used in this thesis. Recall that we de-
note the Euclidean norm and the norm in infinite dimensional spaces (e.g., Lp(Rn), Xγ)
as | · | and ‖ · ‖, respectively; a · b denotes the usual Euclidean product in Rn with the
norm |z| =

√
z · z.

Definition 9. [62] A Lévy process on Rn is a stochastic (right continuous) process
X = {Xt, t ≥ 0} having the left limit with independent stationary increments. It is
uniquely characterized by its Lévy exponent φ:

Ex(e
iy·Xt) = e−tφ(y), y ∈ Rn.

The subscript x in the expectation operator Ex indicates that the process Xt starts from
a given value x at the origin t = 0. The Lévy exponent φ has the following unique
decomposition:

φ(y) = ib · y +
n∑

i,j=1

aijyiyj +

∫
Rn

(
1− eiy·z + iy · z1|z|≤1

)
ν(dz),

where b ∈ Rn is a constant vector; (aij) is a constant matrix, which is positive semidef-
inite; ν(dz) is a nonnegative measure on Rn \ {0} such that

∫
Rn min(1, |z|2)ν(dz) <∞

(c.f., [53]).

Next, we introduce and discuss the concept of exponential Lévy models. Exponen-
tial Lévy models form a class of stochastic processes used in mathematical finance to
model the dynamics of underlying asset prices. The underlying process is a stochas-
tic process whose logarithm is a Lévy process, i.e., a process that has stationary and
independent increments with jumps of random size. The exponential of this process
then becomes a stochastic process that has the property of multiplicative decomposi-
tion, i.e., it can be written as the product of two independent processes: one that has
deterministic growth (e.g., a deterministic interest rate) and one that has stochastic
volatility (e.g., a Lévy process).

3.2.1 Examples of Lévy processes in finance

There are two major types of exponential Lévy models considered in the literature:
jump-diffusion and infinite activity pure jump models. In jump-diffusion models, the
log-price is represented as a Lévy process with a nonzero diffusion part (σ > 0) and a
jump process with finite activity (i.e., ν(R) <∞). In contrast, there is no diffusion part
in infinite activity pure jump models and only a jump process with infinite activity (i.e.,
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ν(R) = ∞). Next, we discuss different types of exponential Lévy models that differ in
the choice of the Lévy measure.

Jump-Diffusion models

A Lévy process with jump-diffusion has the following general form:

Xt = γt+ σWt +
Nt∑
i=1

Yi,

where σ > 0, and Nt is a Poisson process with intensity λ that counts the jumps of
Xt, and Yi, i = 1, · · · , Nt, are independent and identically distributed random variables
with distribution µ. The Lévy measure ν is λµ, and the drift γ is given by

γ = −σ
2

2
−
∫
R

(
ez − 1− z1|z|≤1

)
ν (dz) .

Merton’s model

This is the first jump-diffusion model proposed by Merton [47] in the context of financial
applications. The random variables Yi, i = 1, 2, 3..., are normally distributed with mean
m and variance δ2. It has the following Lévy density:

ν(dz) = λ
1

(2πδ2)n/2
e−

|z−m|2

2δ2 dz , (3.3)

where the parameters m ∈ Rn, λ, δ > 0, are given. It is worth noting that Merton’s
measure is a finite activity Lévy measure, i.e., ν(Rn) =

∫
Rn ν(dz) < ∞, with finite

variation
∫
|z|≤1

|z|ν(dz) <∞.

Infinite activity

The variance Gamma and normal inverse Gaussian (NIG) processes are obtained by a
subordination of a Brownian motion and a tempered α-stable process; variance Gamma
and NIG processes correspond to α = 0 and α = 1/2, respectively. These models
are widely used in finance because of the existence of the probability density of the
subordinator in a closed form for these values of α (for more details on the probability
density, see [16]).

Variance Gamma process

This is a process of infinite activity and finite variation (
∫
|z|≤1

|z|ν(dz) < ∞) that is
widely used in financial modeling. It has the following Lévy density:
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ν (dz) =
1

κ |z|
eAz−B|z|

where

A =
θ

σ2
, B =

√
θ2 + 2σ2

κ

σ2
.

Here, σ and θ are parameters related to the volatility and drift of the Brownian motion,
respectively; κ is the parameter related to the variance of the subordinator, which is a
Gamma process (see [16]).

Normal inverse Gaussian model

The NIG model is a process of infinite activity and infinite variation. It has the
following Lévy density [16]

ν (dz) =
C

|z|
eAzK1 (B |z|)

where

C =

√
θ2 + σ2

κ

2πσ
√
κ
,A =

θ

σ2
, B =

√
θ2 + σ2

κ

σ2
,

where θ, σ, and κ have the same meaning as in the variance Gamma process.

3.2.2 Admissible activity Lévy measures

This subsection presents the notion of an admissible activity Lévy measure introduced
by Cruz and Ševčovič [18, 19] for the one-dimensional case n = 1, which was later
extended by Ševčovič and Udeani [62] for the multidimensional case n ≥ 1.

Definition 10. [62, Definition 1] A measure ν in Rn is called an admissible activity
Lévy measure if there exists a nonnegative Lebesgue measurable function h : Rn → R
such that ν(dz) = h(z)dz with

0 ≤ h(z) ≤ C0|z|−αe−D|z|−µ|z|2 , (3.4)

for all z ∈ Rn and the shape parameters α, µ ≥ 0, D ∈ R (D > 0 if µ = 0), where
C0 > 0 is a positive constant.

The additional conditions
∫
Rn min(|z|2, 1)ν(dz) < ∞ and

∫
|z|>1

ezν(dz) < ∞ are satis-
fied provided that ν is an admissible Lévy measure with shape parameters α < n+ 2,
and either µ > 0, D± ∈ R, or µ = 0 and D− + 1 < 0 < D+. For the Merton model,
we have α = 0, D± = 0 and µ = 1/(2δ2) > 0. Meanwhile, for the Kou model, we
have α = µ = 0, D+ = λ−, D− = −λ+. For the variance Gamma process, we have
α = 1, µ = 0, D± = A±B.
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3.3 Main results

This section is devoted to our main results on the nonlocal equation in the scale of
Bessel potential space in higher-dimensional space.

Now, consider the following mapping

Q(u, ξ) = u(x+ ξ(x))− ξ(x)
∂u

∂x
, x ∈ R.

where ξ is a shift function depending on the variable x ∈ R. Then, by [18, Lemma
3.4], there is a constant Ĉ such that for any ξ1, ξ2 ∈ L∞(R) and u with ∂xu ∈ Xγ−1/2,
1
2
< γ < 1, we have

‖Q(u, ξ1)−Q(u, ξ2)‖Lp(R) ≤ Ĉ‖ξ1 − ξ2‖2γ−1
∞ (‖ξ1‖∞ + ‖ξ2‖∞)‖∂xu‖Xγ−1/2 .

Next, we present a more general result of the above statement. The statement of
the proposition and its proof is contained in our recent publication (see, Ševčovič and
Udeani [62]).

Proposition 1. [62, Ševčovič and Udeani] Let ξ ∈ L∞(Rn) and define the mapping
Q(u, ξ) by

Q(u, ξ) = u(x+ ξ(x))− ξ(x) · ∇xu(x), x ∈ Rn.

Then, there exists a constant Ĉ > 0 such that for any vector valued functions ξ1, ξ2 ∈
L∞(Rn), and u such that ∇xu ∈ (Xγ−1/2)n, 1/2 ≤ γ < 1, the following estimate holds:

‖Q(u, ξ1)−Q(u, ξ2)‖Lp(Rn) ≤ Ĉ‖ξ1 − ξ2‖2γ−1
∞ (‖ξ1‖∞ + ‖ξ2‖∞)‖∇xu‖Xγ−1/2 .

Proposition 1 shows the estimate when the nonlocal term depends only on x, i.e.,
for the case ξ = ξ(x). It generalizes the known results by Cruz and Ševčovič [19, 18]
for the one-dimensional case n = 1. For the proof of Proposition 1, see Appendix 8.1

Corollary 2. Let u be such that ∇xu ∈ (Xγ−1/2)n where 1 > γ ≥ 1/2. Then, for any
ξ ∈ Rn, the following pointwise estimate holds:

‖Q(u, ξ)‖Lp(Rn) ≤ C0|ξ|2γ‖∇xu‖Xγ−1/2 .

Proposition 2. [62, Ševčovič and Udeani] Suppose that the shift mapping ξ = ξ(x, z)

satisfies supx∈R |ξ(x, z)| ≤ C0|z|ω(1 + eD0|z|) for some constants C0 > 0, D0 ≥ 0, ω > 0

and any z ∈ R. Assume ν is a Lévy measure with the shape parameters α,D, and either
µ > 0, D ∈ R, or µ = 0 and D > D0 ≥ 0. Assume 1/2 ≤ γ < 1, and γ > (α−n)/(2ω).
Then, there exists a constant C0 > 0 such that

‖f(u)‖Lp ≤ C0‖∇xu‖Xγ−1/2 ,
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provided that ∇xu ∈ (Xγ−1/2)n. If u ∈ Xγ, then ‖f(u)‖Lp ≤ C‖u‖Xγ , i.e., f : Xγ → X

is a bounded linear operator.

Proposition 2 shows the case when the nonlocal integral term depends on x and z

variables. It generalizes the result in [19, Lemma 3.4] due to Cruz and Ševčovič proven
for the case where ξ(x, z) ≡ z. The proof of Proposition 2 is contained in our recent
paper [62, Proposition 2]. For more details on the proof of Proposition 1, see Appendix
2.

Theorem 4. Suppose that the shift mapping ξ = ξ(x, z) satisfies supx∈R |ξ(x, z)| ≤
C0|z|ω(1 + eD0|z|), z ∈ Rn, for some constants C0 > 0, D0 ≥ 0, ω > 0. Assume ν is an
admissible activity Lévy measure with the shape parameters α,D, and, either µ > 0, D ∈
R, or µ = 0, D > D0 ≥ 0. Assume 1/2 ≤ γ < 1 and γ > (α−n)/(2ω), n ≥ 1. Suppose
that g(τ, x, u,∇xu) is Hölder continuous in the τ variable and Lipschitz continuous in
the remaining variables, respectively. Assume u0 ∈ Xγ, and T > 0. Then, there exists
a unique mild solution u to PIDE (3.2) that satisfies u ∈ C([0, T ], Xγ)∩C1([0, T ], X).

Theorem 4 is a direct consequence of Propositions 2. It is a nontrivial generalization
of the result shown by Ševčovič and Cruz [18] in the one space dimension n = 1. The
proof of Theorem 4 is based on the result due to Henry [27, Proposition 3.5].

3.3.1 Option Pricing Under Stock-Trading Strategy

This section is devoted to the application of the results to the pricing of options under
a stock trading strategy.

The proof of Theorem 4 is based on Propositions 2 and [27, Proposition 3.5]. It
is a nontrivial generalization of the result shown by Ševčovič and Cruz [18] in one-
dimensional space, i.e., n = 1.

In finance, it is known that the price V = V (t, S) of an option on an underlying
asset price S > 0 at time t ∈ [0, T ] can be obtained from the solution to the linear
Black–Scholes parabolic equation of the form:

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0, V (T, S) = Φ(S), (3.5)

where r > 0 is a parameter representing the risk-free interest rate of a bond; σ > 0

is the historical volatility of the underlying asset price S time series. We assume that
the underlying asset price follows the geometric Brownian motion dS/S = µdt+σdW ,
where {Wt, t ≥ 0} denotes the standard Wiener process. The terminal condition Φ(S)

represents the pay-off diagram at maturity t = T , Φ(S) = (S −K)+ (call option case)
or Φ(S) = (K − S)+ (put option case). Equation (3.5) can be transformed using
x = ln S

K
, τ = T − t, and V (t, S) = e−rτu(τ, x) into parabolic equation
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∂u

∂τ
=
σ2

2

∂2u

∂2x
+

(
r − σ2

2

)
∂u

∂x
− ru. (3.6)

The multidimensional generalization of (3.5), where the option price V (t, S1, · · · , Sn)

depends on the vector of n underlying stochastic assets S = (S1, · · · , Sn) with several
volatilities σi and mutual correlations %ij, i, j = 1, · · · , n, is given by

∂V

∂t
+

1

2

n∑
i=1

n∑
j=1

ρijσiσjSiSj
∂2V

∂Si∂Sj

+ r

n∑
i=1

Si
∂V

∂Si

− rV = 0, V (T, S) = Φ(S). (3.7)

It is worth noting that equations (3.5) and (3.7) can be transformed into equation (3.1)
defined on the whole space Rn (c.f., Ševčovič, Stehlíková, Mikula [63, Chapter 4, Section
5]). According to stock markets analysis, the models (3.5) and (3.7) were derived under
several restrictive assumptions like perfect replication of a portfolio and its liquidity,
completeness and frictionless of the financial market, and absence of transaction costs.
However, these assumptions are often violated in financial markets. Because of this,
several authors have investigated these models in order to relax these assumptions (see
for [6, 30, 42, 43, 64]. According to Cruz and Ševčovič [19], the Black–Scholes model
can incorporate the effect of a large trader and the assumption on the liquidity of
the market can be relaxed by assuming that the underlying asset price follows a Lévy
stochastic process with jumps. This results in the following nonlinear PIDE:

∂V

∂t
+
1

2

σ2S2

(1− %S∂Sφ)
2

∂2V

∂S2
+rS

∂V

∂S
−rV+

∫
R

(
V (t, S +H)− V (t, S)−H

∂V

∂S

)
ν(dz) = 0,

(3.8)
where the shift function H = H(φ, S, z) depends on the large investor stock-trading
strategy function φ = φ(t, S), which is a solution to the following implicit algebraic
equation:

H = ρS(φ(t, S +H)− φ(t, S)) + S(ez − 1). (3.9)

The large trader strategy function φ may depend on the derivative ∂SV of the option
price V , e.g., φ(t, S) = ∂SV (t, S). Moreover, in our application, we assume the trading
strategy function φ(t, S) is prescribed and it is globally Hölder continuous. For more
details on how (3.8) can be transformed into a linear or nonlinear parabolic PIDE with
respect to the value of ρ, see our recent paper [62, Ševčovič and Udeani].

Nevertheless, in our application, we assume the trading strategy function φ(t, S) is
prescribed and it is globally Hölder continuous.

If ρ = 0, then H = S(ez − 1). Using the standard transformation τ = T − t, x =

ln( S
K
) and setting V (t, S) = e−rτu(τ, x), then equation (3.8) can be reduced to a linear

PIDE of the form (3.1) in the one-dimensional space (n = 1).
If ρ > 0, then (3.8) can be transformed into a nonlinear parabolic PIDE. Indeed,
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suppose that the transformed large trader stock-trading strategy ψ(τ, x) = φ(t, S).
Then, V (t, S) solves equation (3.8) if and only if the transformed function u(τ, x) is a
solution to the nonlinear parabolic equation:

∂u

∂τ
=

σ2

2

1

(1− ρ∂xψ)2
∂2u

∂2x
+

(
r − σ2

2

1

(1− ρ∂xψ)2
− δ(τ, x)

)
∂u

∂x

+

∫
R

(
u(τ, x+ ξ)− u(τ, x)− ξ

∂u

∂x
(τ, x)

)
ν(dz), u(0, x) = Φ(Kex),(3.10)

τ ∈ [0, T ], x ∈ R. The shift function ξ(τ, x, z) is a solution to the algebraic equation:

eξ = ez + ρ(ψ(τ, x+ ξ)− ψ(τ, x)), (3.11)

and δ =
∫
R(e

ξ − 1 − ξ)ν(dz) =
∫
R(e

z − 1 − ξ + ρ(ψ(τ, x + ξ) − ψ(τ, x)))ν(dz). For
small values of 0 < ρ � 1, we can construct the first order asymptotic expansion
ξ(τ, x, z) = ξ0(τ, x, z) + ρξ1(τ, x, z). For ρ = 0, we obtain ξ0(τ, x, z) = z. Hence

ez+ρξ1 = ez + ρ(ψ(τ, x+ z + ρξ1)− ψ(τ, x)).

Taking the first derivative of the above implicit equation with respect to ρ and evalu-
ating it at the origin ρ = 0, we obtain ξ1 = e−z(ψ(τ, x+ z)− ψ(τ, x)), i.e.,

ξ(τ, x, z) = z + ρe−z(ψ(τ, x+ z)− ψ(τ, x)). (3.12)

As a consequence, we obtain the following lemma. For more details on its proof
and applications, see [62, Ševčovič and Udeani].

Lemma 2. [62] Assume that the stock-trading strategy φ = φ(t, S) is a globally ω-
Hölder continuous function, 0 < ω ≤ 1. Then, the transformed function ψ(τ, x) =

φ(t, S), with τ = T − t and x = lnS, is ω-Hölder continuous, and the first order
asymptotic expansion ξ(τ, x, z) of the nonlinear algebraic equation (3.11) is ω-Hölder
continuous in all variables. Furthermore, there exists a constant C0 > 0 such that
supτ,x |ξ(τ, x, z)| ≤ C0|z|ω(1 + e|z|) for any z ∈ R.

Next, consider a simplified linear approximation of (3.8), where we set ρ = 0 in the
diffusion function with the assumption that the shift function H depends on ρ. Then,
the transformed Cauchy problem for the solution u with the first-order approximation
of the shift function ξ is given by

∂u

∂τ
=

σ2

2

∂2u

∂2x
+

(
r − σ2

2
+ δ(τ, x)

)
∂u

∂x

+

∫
R

(
u(τ, x+ ξ)− u(τ, x)− ξ

∂u

∂x
(τ, x)

)
ν(dz), (3.13)
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τ ∈ [0, T ], x ∈ R, where ξ(τ, x, z) = z + ρ(ψ(τ, x + z) − ψ(τ, x)). Consequently, we
obtain the following theorem.

Theorem 5. [62] Assume the transformed stock-trading strategy function ψ(τ, x) is
globally ω-Hölder continuous in both variables. Suppose that ν is an admissible Lévy
measure with the shape parameters α < 3, D ∈ R, where either µ > 0, or µ = 0 and
D > 1. Let Xγ be the space of Bessel potentials space L p

2γ(R), where α−1
2ω

< γ < p+1
2p

and 1
2
≤ γ < 1. Let T > 0. Then, the linear PIDE (3.13) has a unique mild

solution u with the property that the difference U = u − uBS belongs to the space
C([0, T ], Xγ) ∩ C1([0, T ], X).

In the proof of Theorem 5, we note that the initial condition u(0, ·) may not belong
to Xγ since it is not smooth for x = 0 and grows exponentially for x → ∞ (call
option) or x→ −∞ (put option). However, the shifted function U = u− uBS satisfies
U(0, ·) ≡ 0, and so the initial condition U(0, ·) belongs to Xγ. Furthermore, the shift
function uBS enters the governing PIDE as it includes the term f(uBS(τ, ·)) on the right-
hand side. Moreover, the shift term f(uBS(τ, ·)) is singular for τ → 0+ since uBS(0, x)

is not sufficiently smooth for x = 0. In this thesis [62], we show the Hölder estimates,
which are sufficient for proving the main result of Theorem 5. The exponential growth
of the function uBS can be overcome since f̃(ex) = 0, where f̃(u) = f(u) − δ(τ, ·)∂xu,
i.e.,

f̃(u)(x) =

∫
R

(
u(x+ ξ)− u(x)− (eξ − 1)∂xu(x)

)
ν(dz).

Remark 6. It is worth noting that the call/put option pay-off functions Φ(S) =

Φ(Kex) = (S − K)+ = K(ex − 1)+ / Φ(S) = Φ(Kex) = (K − S)+ = K(1 − ex)+

need not belong to the Banach space Xγ. Therefore, to overcome this problem and for-
mulate the existence and uniqueness of a solution to the PIDE (3.13), one can employ
the idea of [18] by shifting the solution u by uBS. Here, uBS(τ, x) = erτV BS(T−τ,Kex)
is an explicit solution to the linear Black-Scholes equation without the nonlocal part.
In other words, uBS solves the linear parabolic equation:

∂uBS

∂τ
− σ2

2

∂2uBS

∂x2
−
(
r − σ2

2

)
∂uBS

∂x
= 0, uBS(0, x) = Φ(Kex), τ ∈ (0, T ), x ∈ R.

(3.14)
Recall that uBS(τ, x) = Kex+rτN(d1) −KN(d2) (call option case), where d1,2 = (x +

(r ± σ2/2)τ)/(σ
√
τ) (c.f., [42, 63]). Here, N(d) = 1√

2π

∫ d

−∞ e−ξ2/2dξ is the cumulative
density function of the normal distribution.

3.4 Discussion to Chapter 3

In this chapter, we studied the existence and uniqueness of solutions of nonlinear
partial integro-differential equations (PIDEs) arising from financial modeling in mul-
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tidimensional spaces. Such a PIDE models the well-known Black-Scholes equation for
pricing call/put option, which corresponds to the parabolic equation of the form (1.1).
We relaxed and generalized some of the existing assumptions on the Black-Scholes
model. We employed the theory of abstract semilinear parabolic equations in order to
prove the existence and uniqueness of solutions in the scale of Bessel potential spaces.
Specifically, the corresponding nonlocal PIDE generalizes known results by Cruz and
Ševčovič [18]. The novelty of this chapter is the generalization of existing results in
one dimension to the multidimensional case. We considered a wide class of admissi-
ble Lévy measures satisfying suitable growth conditions near the origin and infinity.
We investigated solutions to the nonlocal equation in which the shift function may
depend on a prescribed large investor stock-trading strategy function. We showed the
Hölder estimates, which are sufficient for proving the main result of the theorem. As
an application to option pricing in the one-dimensional space, we considered a general
shift function arising from a nonlinear option pricing model taking into account a large
trader stock-trading strategy.
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CHAPTER 4

Application of Maximal monotone operator to Portfolio
Management

It is known that nonlinear parabolic equations model several physical processes that
are of diffusion type, e.g., heat propagation, filtration, dynamics of biological groups,
and optimal control problems. Hamilton-Jacobi-Bellman (HJB) equation, as a nonlin-
ear partial differential equation, plays a crucial role in optimal control theory since it
provides a necessary and sufficient condition for optimality. Several studies have shown
that such an HJB equation can be modeled as a nonlinear diffusion equation. In this
chapter, we investigate the existence and uniqueness of a solution to fully nonlinear
parabolic HJB arising from optimal portfolio management. Our approach in estab-
lishing the existence results is to first transform the nonlinear HJB into a nonlinear
diffusion equation, which in turn represents a nonlocal PIDE in Sobolev spaces. We
consider the HJB equation arising from portfolio selection problems, where the goal of
an investor is to maximize the conditional expected value of the terminal utility of the
portfolio (see Udeani and Ševčovič [68]). The main results of this chapter are contained
in our paper68

68C. I. Udeani and D. Ševčovič. Application of maximal monotone operator method for solving
Hamilton–Jacobi–Bellman equation arising from optimal portfolio selection problem. Japan Journal
of Industrial and Applied Mathematics, Springer. 5 (2021), pp 1–21.
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4.1 Background and motivation

The goal of this chapter is to study the existence and uniqueness of a solution ϕ =

ϕ(τ, x) to the Cauchy problem for the nonlinear parabolic equation

∂τϕ−∆α(τ, ϕ) = g0(τ, ϕ) +∇ · g1(τ, ϕ), (4.1)

ϕ(·, 0) = ϕ0, (4.2)

where τ ∈ (0, T ), x ∈ Rd, d ≥ 1, and g0, g1j : [0, T ] × H → H, j = 1, · · · , n, are
globally Lipschitz continuous functions (see, the paper ([68, Udeani and Ševčovič]).
Here, H = L2(Rd). The diffusion function α = α(x, τ, ϕ) is assumed to be globally
Lipschitz continuous and strictly increasing in the ϕ-variable. An example of such a
Lipschitz continuous function α(x, τ, ϕ) is the value function of the following parametric
optimization problem:

α(x, τ, ϕ) = min
θ∈4

(
−µ(x, t,θ) + ϕ

2
σ(x, t,θ)2

)
, τ ∈ (0, T ), x ∈ Rd, ϕ > ϕmin , (4.3)

where µ, σ2 are given C1 functions, representing the drift and volatility, respectively,
and 4 ⊂ Rn is a compact decision set. Depending on the structure of the decision set
4, the function α is C1,1 smooth if 4 is a convex set. But it can only be C0,1 smooth
if 4 is not connected.

Our motivation for studying the nonlinear parabolic equation of the form (4.1) for
d = 1 arises from the dynamic stochastic programming, where the goal is to maximize
the conditional expected value of the terminal utility of the portfolio:

max
θ|[0,T )

E
[
u(xθT )

∣∣xθ0 = x0
]
, (4.4)

on a finite time horizon [0, T ]. Here, u : R → R is a given increasing terminal utility
function, and x0 is a given initial state condition of the process {xθt } at t = 0. The
underlying stochastic process {xθt } with a drift µ(x, t,θ) and volatility σ(x, t,θ) is
assumed to satisfy the following Itô’s stochastic differential equation:

dxθt = µ(xθt , t,θt)dt+ σ(xθt , t,θt)dWt , (4.5)

where the control process {θt} is adapted to the process {xt, t ≥ 0}. Here, {Wt, t ≥ 0}
is the standard one-dimensional Wiener process. The control parameter θ is assumed
to belong to a given compact subset 4 in Rn. An example of such a decision set
is a compact convex simplex 4 ≡ Sn = {θ ∈ Rn | θ ≥ 0,1Tθ = 1} ⊂ Rn, where
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1 = (1, · · · , 1)T ∈ Rn or 4 ⊂ Sn can be finite discrete set. Consider the value function

V (x, t) := sup
θ|[t,T )

E
[
u(xθT )|xθt = x

]
. (4.6)

subject to the terminal condition V (x, T ) = u(x). According to the theory of stochastic
dynamic programming [12], such a value function (4.6) solves the fully nonlinear HJB
equation describing the optimal portfolio selection strategy, which is given by

∂tV +max
θ∈4

(
µ(x, t,θ) ∂xV +

1

2
σ(x, t,θ)2 ∂2xV

)
= 0 , (4.7)

V (x, T ) = u(x), (4.8)

where x ∈ R, t ∈ [0, T ).
Next, we illustrate the transformation of the nonlinear HJB equation (4.7) into a

quasilinear parabolic equation using the Ricatti transformation function.

4.2 Riccati transformation

This section presents how the HJB equation (4.7) can be transformed into a quasilin-
ear PDE using the so-called Ricatti transformation techniques. Such a transformed
parabolic equation corresponds to the Cauchy problem (4.1), which is obtained after
some perturbation in the main operator. The Riccati transformation ϕ of the value
function V can be defined based on the approach introduced by Abe and Ishimura [1],
Ishimura and Ševčovič [29], Ševčovič and Macová [45], and Kilianová and Ševčovič [35]
as follows:

ϕ(x, τ) = −∂
2
xV (x, t)

∂xV (x, t)
, where τ = T − t. (4.9)

Suppose the value function V (x, t) is increasing in the x-variable. In other words,
assume that the terminal utility function u(x) is increasing. Then, the HJB equation
(4.7) can be rewritten as follows:

∂tV − α(·, ϕ)∂xV = 0, V (·, T ) = u(·), (4.10)

where α(x, τ, ϕ) is the value function of the following parametric optimization problem:

α(x, τ, ϕ) = min
θ∈4

(
−µ(x, t,θ) + ϕ

2
σ(x, t,θ)2

)
, τ = T − t . (4.11)

Remark 7. It is worth noting that the optimization problem (4.11) is related to the
classical Markowitz model on optimal portfolio selection problem formulated as max-
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imization of the mean return µ(θ) ≡ µTθ under the volatility constraint 1
2
σ(θ)2 ≡

1
2
θTΣθ ≤ 1

2
σ2
0, i.e.,

max
θ∈4

µTθ, s.t.
1

2
θTΣθ ≤ 1

2
σ2
0,

where the decision set is the simplex 4 = {θ ∈ Rn | θ ≥ 0,1Tθ = 1}. The Lagrange
multiplier for the volatility constraint can be viewed as the parameter ϕ entering the
parametric optimization problem (4.11).

Next, let ∂xα be the total differential of the function α(x, τ, ϕ), where ϕ = ϕ(x, τ),
i.e.,

∂xα(x, τ, ϕ) = α′
x(x, τ, ϕ) + α′

ϕ(x, τ, ϕ) ∂xϕ.

Here, α′
x and α′

ϕ are partial derivatives of α with respect to x- and ϕ- variables, re-
spectively. The following remark is a consequence of the result presented by Kilianová
and Ševčovič [36].

Remark 8. The relationship between the transformed function ϕ and the value function
V is given by the result due to Kilianová and Ševčovič [36]. With regard to [36, Theorem
4.2], an increasing value function V (x, t) in the x-variable is a solution to the HJB equa-
tion (4.7) if and only if the transformed function ϕ(x, τ) = −∂2xV (x, t)/∂xV (x, t), t =

T − τ , is a solution to the Cauchy problem for the quasilinear parabolic PDE:

∂τϕ− ∂2xα(·, ϕ) = −∂x (α(·, ϕ)ϕ) , (4.12)

ϕ(x, 0) = ϕ0(x) ≡ −u′′(x)/u′(x), (x, τ) ∈ R× (0, T ). (4.13)

It is worth noting that the Cauchy problem for the quasilinear parabolic PDE (4.12)
is equivalent to the nonlinear parabolic equation (4.1) in one-dimensional space. This
is obtainable after some shift/perturbation in the main operator of the transformed
equation (4.12).

4.3 Preliminaries, definitions, and main results

First, we present some basic definitions and the underlying settings used in this chapter.
Then, the existence and uniqueness of the solution to the parabolic equation (4.1) is
established in high-dimensional spaces.

Next, we recall the following settings, which form the basis of the Sobleve spaces
used in this thesis.

Definition 11. Let H = L2(Rd) = {f : Rd → R, ‖f‖2L2 =
∫
Rd |f(x)|2dx < ∞} be

a Hilbert space endowed with the inner product (f, g) =
∫
Rd f(x)g(x)dx. Then, the
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Banach spaces V and V ′ are defined as follows:

V = H1(Rd), V ′ = H−1(Rd).

The Sobolev spaces Hs(Rd) are defined by means of the Fourier transform

f̂(ξ) =
1

(2π)d/2

∫
Rd

e−ix·ξf(x)dx, ξ = (ξ1, ξ2, ..., ξd)
T ∈ Rd,

Hs(Rd) = {f : Rd → R, (1 + |ξ|2)s/2f̂(ξ) ∈ L2(Rd)}, s ∈ R,

endowed with the norm ‖f‖2Hs =
∫
Rd(1 + |ξ|2)s|f̂(ξ)|2dξ, where |ξ| = (ξ21 + · · ·+ ξ2d)

1/2.
Moreover, V,H, and V ′ forms the Gelfand triple (V,H, V ′), i.e., V ↪→ H ↪→ V ′, where
V ′ is the dual space of V .

Define the linear operator A : V → V ′ as follows

Aψ = ψ −∆ψ.

Then, A is a self-adjoint operator in the Hilbert space H = L2(Rd) with the following
Fourier transform representation:

Âψ(ξ) = (1 + |ξ|2)ψ̂(ξ).

where ξ ∈ Rd and |ξ| = (ξ21 + · · ·+ ξ2d)
1/2. Furthermore, the fractional powers of A are

defined by Âsψ(ξ) = (1 + |ξ|2)sψ̂(ξ), s ∈ R. In particular,

Â±1/2ψ(ξ) = (1 + |ξ|2)±1/2ψ̂(ξ),

and A−1/2 is a self-adjoint operator in the Hilbert space H = L2(Rd). Moreover,
A−1 = A−1/2A−1/2.

In this thesis, we denote the duality pairing between the spaces V and V ′ by
〈., .〉 ≡ 〈·, ·〉V ′,V , i.e., the value F (u) of a functional F ∈ V ′ at u ∈ V is denoted
by 〈F, u〉.

4.3.1 Main results

This section is devoted to the existence results for the nonlinear parabolic equation
(4.1).

Theorem 6. ([68, Ševčovič and Udeani]) Assume that the above settings on H and V
hold. Assume that g0, g1j : [0, T ]×H → H, j = 1, · · · , d, be globally Lipschitz continuous
functions. Suppose α ∈ C0,1(D) is such that there exist constants ω, L, L0 > 0 such
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that 0 < ω ≤ α′
ϕ(x, τ, ϕ) ≤ L, |∇xα(x, τ, ϕ)| ≤ p(x, τ) + L0|ϕ|, α(x, τ, 0) = h(x, τ) for

a.e. (x, τ, ϕ) ∈ D, where D = Rd× (0, T )× (ϕmin,∞), and p, h ∈ L∞((0, T );H). Then
for any T > 0 and ϕ0 ∈ H, there exists a unique solution ϕ ∈ V of the Cauchy problem

∂τϕ+ Aα(·, τ, ϕ) = g0(τ, ϕ) +∇ · g1(τ, ϕ), ϕ(·, 0) = ϕ0(·). (4.14)

Theorem 6 shows the existence and uniqueness of the solution to the parabolic
equation in an abstract setting, which corresponds to fully nonlinear evolutionary HJB
(4.7). The proof of Theorem 6 is based on the concept of the monotone operator
technique in higher-dimensional space. We employed Banach’s fixed point theorem to
obtain the uniqueness of the solution to the general form of the transformed parabolic
equation in a suitable Sobolev space. The complete proof of Theorem 6 is contained in
our recent paper (see, [68, Ševčovič and Udeani]), which is attached in the Appendix
8.2.

Under assumption of the Theorem 6, we have α(·, 0), g0(·, 0), g1j(·, 0) ∈ H. Here,
the space X = L∞((0, T );V ′) is endowed with the norm

‖ϕ‖2X = sup
τ∈[0,T ]

‖ϕ(τ)‖2V ′ , ∀ϕ ∈ X .

Consequently, we have the following theorem.

Theorem 7. ([68, Ševčovič and Udeani]) Suppose that the functions α, g0, g1j, j =

1, · · · , d, fulfills the assumptions of Theorem 6. Then, the unique solution ϕ ∈ V to the
Cauchy problem is absolutely continuous, i.e., ϕ ∈ C([0, T ];H). Moreover, there exist
a constant C̃ > 0, such that the unique solution satisfies the following inequality:

‖ϕ‖2X + ‖ϕ‖2H ≤ C̃
(
‖ϕ0‖2V ′ + ‖α(·, 0)‖2H + ‖g0(·, 0)‖2H +

d∑
j=1

‖g1j(·, 0)‖2H
)
, (4.15)

where α(x, τ, 0) = h(x, τ) for a.e. (x, τ, ϕ) ∈ D and h ∈ L∞((0, T );H), D =

Rd × (0, T )× (ϕmin,∞). Here, H is a Hilbert space endowed with the norm

‖ϕ‖2H =

∫ T

0

‖ϕ(τ)‖2Hdτ, ∀ϕ ∈ H.

Theorem 7 shows that the unique solution to the Cauchy problem (4.14) is abso-
lutely continuous under the assumption of Theorem 7. It also shows that the unique
solution ϕ ∈ V satisfies the energy estimate (4.15). The proof of Theorem 7 is con-
tained in our paper (see, [68, Ševčovič and Udeani]), which is attached in the Appendix
8.2.

Theorem 8. [68, Ševčovič and Udeani] Let the decision set 4 ⊂ Rn be compact and the
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function u : R → R be an increasing utility function such that ϕ0(x) = −u′′(x)/u′(x)
belongs to the space L2(R)∩L∞(R). Suppose that the drift µ(x,θ) and volatility function
σ2(θ) > 0 are C1 continuous in the x and θ variables, and the value function α(x, ϕ)

given in (4.3) satisfies p ∈ L2(R) ∩ L∞(R), h ∈ L∞(R), and ∂2xh ∈ L2(R), where

p(x) = max
θ∈4

|∂xµ(x,θ)|, h(x) = −max
θ∈4

µ(x,θ).

Then, for any T > 0, there exists a unique solution ϕ ∈ C([0, T ];H)∩H of the Cauchy
problem

∂τϕ− ∂2xα(·, ϕ) = −∂x (α(·, ϕ)ϕ) , ϕ(x, 0) = ϕ0(x), (x, τ) ∈ R× (0, T ), (4.16)

satisfying ϕ ∈ C([0, T ];H) ∩ L2((0, T );V ) ∩ L∞((0, T )× R).

Theorem 8 shows the necessary and sufficient conditions (under certain assump-
tions) on the utility function, drift function, and volatility function for the existence
and uniqueness of solution of the Cauchy problem. The complete proof of Theorem 8
is contained in our recent paper (see, [68, Ševčovič and Udeani]), which is attached in
the Appendix 8.2.

4.4 Behavior of the solution with respect to the de-
cision set

This section is devoted to the qualitative behavior of the solution of the HJB and
the corresponding quasilinear parabolic equation with respect to the decision set. It
first presents the properties of the value function of the parametric programming, which
gives sufficient conditions for establishing our existence results. Then, the relationships
between the decision set and the corresponding solution to the Cauchy problem are
discussed. Specifically, we investigate and analyze the behavior of the solution ϕ =

ϕ(x, τ) to the Cauchy problem (4.12), which corresponds to the HJB equation (4.7).

4.4.1 Properties of the value function

Proposition 3. ([68, Ševčovič and Udeani]) Let 4 ⊂ Rn be a given compact decision
set. Assume that the functions µ(x, t,θ) and σ(x, t,θ)2 are globally Lipschitz continuous
in x ∈ Rd, t ∈ [0, T ] and θ ∈ 4 variables, and there exist positive constants ω, L > 0

such that ω ≤ 1
2
σ(x, t,θ)2 ≤ L for any x ∈ Rd, t ∈ [0, T ], and θ ∈ 4.
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Then α ∈ C0,1(D). Moreover, the function α is strictly increasing, and

0 < ω ≤ α(x, τ, ϕ2)− α(x, τ, ϕ1)

ϕ2 − ϕ1

≤ L, for any (x, τ, ϕi) ∈ D, (4.17)

i.e., ω ≤ α′
ϕ(x, τ, ϕ) ≤ L, and

|∇xα(x, τ, ϕ)| ≤ p(x, τ) + L0|ϕ|, (4.18)

for a.e. (x, τ, ϕ) ∈ D, where p(x, τ) := maxθ∈4 |∇xµ(x, t,θ)|
and L0 := maxθ∈4,t∈[0,T ],x∈Rd |∇xσ

2(x, t, θ)| where t = T − τ .

Proposition 3 shows the qualitative properties of the value function and sufficient
conditions imposed on the decision set 4 and functions µ and σ that guarantee higher
smoothness of the value function α. It shows the conditions for which the value function
α belongs to C0,1(D), where D = Rd × (0, T ) × (ϕmin,∞), which is crucial in the
assumption of Theorem 6. Moreover, Proposition 3 relaxes the assumption of Lipschitz
continuity of the drift function µ(x, t,θ) and volatility function σ(x, t,θ)2 in the θ-
variable. In other words, it shows that we only require the boundedness of the functions
µ(x, t,θ) and σ(x, t,θ)2 in the θ-variable for the value function α to belong to C0,1(D),
where D = Rd × (0, T )× (ϕmin,∞). The complete proof of Proposition 3 is contained
in our recent paper (see, [68, Ševčovič and Udeani]), which is attached in the appendix.

Theorem 9. [37, Theorem 1] Suppose that 4 ⊂ Rn is a convex compact set, and
the functions µ(x, t,θ) and σ(x, t,θ)2 are C1,1 smooth such that the objective function
f(x, t, ϕ,θ) := −µ(x, t,θ)+ ϕ

2
σ(x, t,θ)2 is strictly convex in the variable θ ∈ 4 for any

ϕ ∈ (ϕmin,∞), then the function α belongs to the space C1,1(D).

Theorem 9 was proved in [37]. It gives sufficient conditions imposed on the decision
set 4 and functions µ and σ guaranteeing higher smoothness of the value function α.
Its proof is based on the classical envelope theorem due to Milgrom and Segal [50] and
the result on Lipschitz continuity of the minimizer θ̂ = θ̂(x, τ, ϕ) belonging to a convex
compact set 4 due to Klatte [40].

4.5 Numerical examples

This subsection presents examples of the value function α = α(ϕ) to the parametric
optimization problem with different decision sets. First, we consider a simple decision
set 4 = {θ ∈ R2, θ ≥ 0,1Tθ = 1}, n = 2, µ(θ) = µTθ, σ2(θ) = θTΣθ, where Σ is
a positive definite covariance matrix, and µ is a positive vector of mean return. The
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value function α = α(ϕ) can be explicitly expressed as follows:

α(ϕ) =


E−ϕ+D−, if 0 < ϕ ≤ ϕ−

∗ ,

A− B
ϕ
+ Cϕ, if ϕ−

∗ < ϕ < ϕ+
∗ ,

E+ϕ+D+, if ϕ+
∗ ≤ ϕ.

Here, (ϕ−
∗ , ϕ

+
∗ ) is the maximal interval where the optimal value θ̂(ϕ) ∈ 4 of the

function θ 7→ −µTθ + ϕ
2
θTΣθ is strictly positive (θ̂(ϕ) > 0) for ϕ ∈ (ϕ−

∗ , ϕ
+
∗ ), and

C,E± > 0, B ≥ 0, A,D± are constants explicitly depending on the covariance matrix
Σ and the vector of mean return µ such that the function α is C1 continuous at ϕ±

∗ ,
i.e., E± = B/(ϕ±

∗ )
2+C and D± = A−B/ϕ±

∗ +Cϕ±−E±ϕ±
∗ . It is clear that α is only

C1,1 continuous function with two points ϕ±
∗ of discontinuity of the second derivative

α′′.
Furthermore, consider a decision set consisting of finite number of points. Then, the

value function α(ϕ) corresponding to such decision set is only piece-wise linear. In other
words, if 4̂ = {θ1, · · · ,θk} ⊂ {θ ∈ R2, θ ≥ 0,1Tθ = 1}, then α(ϕ) = mini=1,··· ,k α

i(ϕ),
where αi(ϕ) = Eiϕ + Di is a linear function with the slope Ei = (1/2)(θi)TΣθi > 0

and intercept Di = −µTθi.
Figure 4.2 (a) shows the graph of the value function α corresponding to the Slovak

pension fund system with the two types of decision sets. According to the data-set
obtained from [38], the portfolio consists of the stock index (with a high mean return
µs = 0.10 and high volatility σs = 0.3) and bonds (with mean return µb = 0.03 and
very low volatility σs = 0.01). The returns on stocks index and bonds are negatively
correlated % = −0.15. µ = (µs, µb)

T = (0.1, 0.05)T . Then Σ11 = σ2
2,Σ22 = σ2

b ,Σ12 =

Σ21 = %σsσb. As shown in Figure 4.2 (a), the solid blue line corresponds to the convex
compact decision set 4 = {θ ∈ R2, θ ≥ 0,1Tθ = 1}. The piece-wise linear value
function α (dotted red line) corresponds to the discrete decision set 4̂ = {θ1,θ2,θ3} ⊂
4. It represents the Slovak pension fund system consisting of three funds: growth funds
with θ1 = (0.8, 0.2)T (80% of stocks and 20% of bonds), balanced funds with θ2 =

(0.5, 0.5)T (equal proportion of stocks and bonds), and conservative funds with θ3 =

(0, 1)T (only bonds) (c.f. [38]). Figure 4.2 (b) shows the graph of the second derivative
α′′
ϕ(ϕ) of the value function α(ϕ) corresponding to the convex compact decision set

4. It has the first point of discontinuity ϕ−
∗ close to the value 2. For n > 2, the

number of discontinuities of α′′
ϕ increases (c.f. [35]). Figure 4.3 shows another example

of the value function and its second derivative for the portfolio consisting of five stocks
(BASF, Bayer, Degussa-Huls, FMC, and Schering) entering DAX30 German stocks
index. The covariance matrix Σ is taken from [20]. We set the vector of yields µ =

(0.03, 0.02, 0.04, 0.01, 0.01)T .
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Figure 4.1: The path θ̂(ϕ) as a function of ϕ [61].

The minimizer θ̂(ϕ) of the convex optimization problem

α(ϕ) = min
θ∈4

{−µTθ +
ϕ

2
θTΣθ}

when considered as a function of the risk aversion parameter ϕ is only Lipschitz con-
tinuous in ϕ. According to Millgrom–Segal envelope theorem, the derivative α′(ϕ) is
given by α′(ϕ) = 1

2
θ̂(ϕ)TΣθ̂(ϕ). Figure 4.1 shows the path θ̂(ϕ) as a function of ϕ

when increasing ϕ from ϕ = 0 to ϕ → ∞. For small values of ϕ, only one asset with
maximal mean return is active, i.e., θ1 > 0, θ2 = θ3 = 0. For intermediate values of ϕ,
two assets are active θ1 > 0, θ2 > 0, θ3 = 0. Moreover, for larger values of ϕ, all three
assets are active, i.e., θ1 > 0, θ2 > 0, θ3 > 0. The path ϕ 7→ θ̂(ϕ) has a discontinuity in
the first derivative when it leaves lower dimensional object (vertex, edge) and enter a
higher-dimensional object volume.

The advantage of the Riccati transformation of the original HJB is twofold. First,
the diffusion function α can be computed in advance as a result of quadratic optimiza-
tion problem when the vector µ and the covariance matrix Σ are given or semidefinite
programming problem when they belong to a uncertainity set of returns and covariance
matrices (c.f. [39]). Figure 4.4 shows the vector of optimal weights θ, as a function
of the parameter ϕ, obtained as the optimal solution to the quadratic optimization
problem with the covariance matrix from [20] corresponding to the five assets (BASF,
Bayer, Degussa–Huls, FMC, Scheringfrom) entering DAX30 index from 2008. There
are more nontrivial weights θi when the parameter ϕ increases.

In contrast to the fully nonlinear character of the original HJB equation (4.7),
the transformed equation (4.12) represents a quasilinear parabolic equation in the di-
vergence form. Thus, efficient numerical schemes can be constructed for this class of
equation. In our computational experiments, we employ the finite volume discretization
scheme proposed and investigated by Kilianová and Ševčovič [35, 36, 37]). Figure 4.5
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Figure 4.2: a) A graph of the value function α, b) its second derivative α′′(ϕ) for the
portfolio consisting of the stocks index and bonds (c.f. [38]) for the convex compact
decision set 4. The dotted line in a) corresponds to the discrete decision set 4̂ =
{θ1,θ2,θ3} ⊂ 4. Source: our computation is based on the method from [68].
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Figure 4.3: a) A graph of the value function α(ϕ), and b) the second derivative α′′
ϕ(ϕ)

corresponding to five stocks (BASF, Bayer, Degussa–Huls, FMC Scheringfrom) enter-
ing DAX30 index. Source: our computation is based on the method from [32, 68].
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Figure 4.5: A solution ϕ(x, τ) for the DARA utility function with a0 = 9, a1 = 8,
x∗ = 2. Source: our computations based on the numerical method from [32, 68].

shows the results of time dependent sequence of profiles ϕ(x, τ) for a constant initial
condition ϕ0 ≡ 9. This figure also shows the solution profiles for the initial condition
ϕ0 attaining four decreasing values {9, 8, 7, 6}. It represents DARA utility function.
The function ϕ(x, τ) is increasing in the x variable and decreasing in the τ = T − t

variable. Therefore, the optimal vector θ(x, τ) contains more diversified portfolio of
assets when x increases and the time t → T (see Figure 4.4). Furthermore, it is rea-
sonable to invest in an asset with the highest expected return when the account value
x is low, whereas an investor has to diversify the portfolio when x is large and time t
is approaching terminal maturity T .

4.5.1 Qualitative behavior of the solution

Now, we study the behavior of the solution ϕ = ϕ(x, τ) to (4.12), where the value
function α(x, τ, ϕ) of the parametric optimization problem is subject to two decision
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sets. Suppose 4̃ and 4 are two decision sets such that 4̃ ⊆ 4, corresponding to
the value functions α̃(x, τ, ϕ̃) and α(x, τ, ϕ), respectively. We study the behavior of
the corresponding solutions ϕ̃(x, τ) and ϕ(x, τ) to the parabolic equation (4.12) with
respect to the two decision sets. The goal is to examine if these solutions are compa-
rable. First, we consider the case when the corresponding drift and volatility functions
are constant. In this case, the solutions associated with the two decision sets are not
generally comparable when one of the decision sets is a subset of the other. Meanwhile,
we can only obtain a direct comparison between the two solutions if in addition one
of the solutions is convex in the x-variable. Some counter examples are presented to
demonstrate this behavior.

Let 4̃ and 4 be two decision sets such that 4̃ ⊆ 4. Then, the corresponding HJB
equations associated with decision sets 4̃ and 4 are given by

∂tṼ +max
θ̃∈4̃

(
µ̃(x, t, θ̃) ∂xṼ +

1

2
σ̃(x, t, θ̃)2 ∂2xṼ

)
= 0, (4.19)

∂tV +max
θ∈4

(
µ(x, t,θ) ∂xV +

1

2
σ(x, t,θ)2 ∂2xV

)
= 0, (4.20)

where Ṽ (x, t) and V (x, t) are the corresponding solutions for t ∈ [0, T ], x > 0,
satisfying the same terminal condition Ṽ (x, T ) = V (x, T ) = u(x). Macova and Ševčovič
[45] established that for 4̃ ⊆ 4, µ̃ = µ, and σ̃ = σ, the value function V is a super-
optimal solution to equation (4.19). In other words, they obtained that

∂tṼ +max
θ̃∈4̃

(
µ̃(x, t, θ̃) ∂xṼ +

1

2
σ(x, t, θ̃)2 ∂2xṼ

)
≤ 0.

Consequently, they obtained that Ṽ (x, t) ≤ V (x, t), for any t ∈ [0, T ] and x > 0. In
this study, we investigate the behavior of the corresponding parabolic equation, given
as follows.

Let ϕ and ϕ̃ be solutions corresponding to the parabolic equation with 4 and 4̃,
respectively, i.e.,

∂τϕ− ∂2xα(·, ϕ) = −∂x (α(·, ϕ)ϕ) , (4.21)

ϕ(x, 0) = ϕ0(x), (x, τ) ∈ R× (0, T ). (4.22)

∂τ ϕ̃− ∂2xα(·, ϕ̃) = −∂x (α(·, ϕ̃)ϕ̃) , (4.23)

ϕ̃(x, 0) = ϕ0(x), (x, τ) ∈ R× (0, T ). (4.24)
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where α(x, τ, ϕ) and α̃(x, τ, ϕ̃) are given, respectively, as follows:

α(x, τ, ϕ) = min
θ∈4

(
−µ(x, t,θ) + ϕ

2
σ(x, t,θ)2

)
, τ = T − t, (4.25)

α̃(x, τ, ϕ̃) = min
θ∈4̃

(
−µ̃(x, t,θ) + ϕ̃

2
σ̃(x, t,θ)2

)
, τ = T − t. (4.26)

The following lemma further illustrates the properties of the diffusion function α with
respect to the two decision sets 4̃ and 4.

Remark 9. Suppose 4̃ and 4 are two decision sets such that 4̃ ⊆ 4, corresponding
to the volatility functions σ̃2, σ2 and drift functions µ̃, µ, respectively. Then,

(i) if σ2(x, t, θ) ≤ σ̃2(x, t, θ) =⇒ α(x, t, ϕ) ≤ α̃(x, t, ϕ);

(i) µ(x, t, θ) ≤ µ̃(x, t, θ) =⇒ α(x, t, ϕ) ≤ α̃(x, t, ϕ).

This can be obtained from the principle of a minimum of (4.25) on a subset of a set.
Our goal is to investigate the relationship between the solutions of the two parabolic
equations (4.25) and (4.26) with respect to the two decision sets. To this end, we
present counter examples to demonstrate that these solutions need not be comparable
based on the decision set.

4.5.2 Examples

In this subsection, we present some examples to demonstrate the behavior of the so-
lutions to the parabolic equation corresponding to the fully nonlinear HJB equation
(4.7). In the following two examples, we consider the case when the drift and volatility
functions are constant. The first example shows that if one of the decision set is a
subset of the other (say, 4̃ ⊆ 4), the two corresponding solutions are comparable pro-
vided that one of the solutions is convex. However, the second example shows that the
two solutions are not generally comparable. In what follows, we assume that 4̃ ⊆ 4.

Example 1. Consider a pair of the following parabolic equations:∂τϕ+ σ2

2
∂2xϕ = 0,

ϕ(x, 0) = x2,
(4.27)

∂τ ϕ̃+ σ̃2

2
∂2xϕ̃ = 0,

ϕ̃(x, 0) = x2,
(4.28)

where α(ϕ) = σ2

2
and α̃(ϕ̃) = σ̃2

2
correspond to the decision sets 4 and 4̃, respectively.

Here, σ and σ̃ are the volatilities corresponding to the decision sets 4 and 4̃, respec-
tively. In both examples, we assume that the corresponding drifts are zero. Following
a suitable approach for solving parabolic equations, we obtain solutions to parabolic
equations (4.27) and (4.28), respectively, as follows:
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Figure 4.6: a) Graphs of the solution ϕ and ϕ̃ corresponding to the decision sets 4
and 4̃, respectively

ϕ(τ, x) = x2 + σ2τ, ϕ̃(τ, x) = x2 + σ̃2τ.

Since 4̃ ⊆ 4, we have that α(x, τ, ϕ) ≤ α̃(x, τ, ϕ̃) (see Remark 9). This implies that
σ2 ≤ σ̃2. Therefore, we obtain

ϕ(τ, x) = x2 + σ2τ ≤ x2 + σ̃2τ = ϕ̃(τ, x), for all x ∈ R, τ > 0.

Example 2. Now, consider a pair of the following parabolic equations:∂τϕ+ σ2

2
∂2xϕ = 0,

ϕ(x, 0) = x3,
(4.29)

∂τϕ+ σ2

2
∂2xϕ = 0,

ϕ(x, 0) = x3.
(4.30)

It can easily be shown that the following functions ϕ and ϕ̃ solve the parabolic
equations (4.29) and (4.30), respectively

ϕ(τ, x) = x3 + 3σ2τx, ϕ̃(τ, x) = x3 + 3σ̃2τx
for all x ∈ R. Here, σ2 and σ̃2 are the volatilities corresponding to the decision sets 4
and 4̃, as stated in the previous example. However, the relationship ϕ(τ, x) ≤ ϕ̃(τ, x)

holds only when x > 0, and it needs not be true for x < 0. Therefore, in general, the
solutions ϕ and ϕ̃ are not comparable. In other words, we cannot really tell the behav-
ior of the solution to such a parabolic equation corresponding to HJB equation when
one of the decision sets is a subset of the other, suggesting that additional information
is needed to obtain an appropriate comparison.

Figure 1(a) shows the behavior of the solutions ϕ(x, τ) and ϕ̃(x, τ) corresponding
to the decision sets 4 and 4̃, as depicted in example (4.27). Since 4̃ ⊆ 4, which
implies that α(x, ϕ) ≤ α̃(x, ϕ̃), we chose the volatilities, σ2 = 0.09, σ̃2 = 0.64, and
τ = 2. In Figure 4.6(a), the yellow curve denotes the solution ϕ̃(x, τ) corresponding to
the decision set 4̃, whereas the blue curve denotes the solution ϕ(x, τ) correspond to
the decision sets 4. For x ∈ R, we found that the solutions corresponding to the two
decision sets are comparable in this example. This could be because one of the solu-

46



tions is convex in the x-variable. Figure 4.6(b) shows the behavior of the two solutions
corresponding to the decision sets 4 and 4̃, as illustrated in example (4.29). Here, we
set the volatilities σ2 = 0.04, σ̃2 = 0.81, and τ = 4. The yellow line corresponds to the
solution ϕ̃(x, τ) associated with the decision set 4̃, whereas the blue line corresponds
to the decision sets 4. Thus, this figure demonstrates that the two solutions are not
comparable.

In summary, given two decision sets 4̃ and 4 such that one of them is a subset of
the other. We do not have a direct comparison for the corresponding solution to the
associated parabolic equation of the form (4.12), when the corresponding volatility and
drift functions are constant. In other words, if 4̃ ⊆ 4, and the associated volatility
and drift functions are constant, we do not have a direct comparison between the
solution ϕ and ϕ̃ to the parabolic equations (4.21) and (4.23), respectively. Example
1 demonstrates that the convexity of one of the solutions is crucial to obtain a direct
comparison. In contrast, Example 2 shows that there is no direct comparison if none
of the solutions is convex with respect to the x-variable.

4.6 Discussion to Chapter 4

In this chapter, we investigated the existence and uniqueness of a solution to a fully non-
linear parabolic Hamilton-Jacobi-Bellman (HJB) equation arising from optimal portfo-
lio management. Our approach in establishing the existence results is to first transform
the HJB into a diffusion equation, which in turn represents a nonlinear partial differ-
ential equation (PIDE) in Sobolev spaces. The HJB equation represents a stochastic
optimization problem, where the goal of an investor is to maximize the conditional
expected value of the terminal utility of the portfolio. Then, the Cauchy problem
is studied in high-dimensional spaces. We employ the monotone operator technique,
Fourier transform approach, and Banach’s fixed point theorem to obtain the existence
and uniqueness of the solution to the general form of the transformed parabolic equa-
tion in high-dimensional spaces. The existence results are based on the properties of the
value function of the parametric programming, which gives sufficient conditions (un-
der certain assumptions) on the utility function, drift function, and volatility function
for establishing our existence results. We also established the necessary and sufficient
conditions on the utility function, drift function, and volatility function for the proof
of our existence and uniqueness results. Furthermore, the relationships between the
decision set and the corresponding solutions to the HJB equation with respect to the
two decision sets are discussed. Specifically, we investigate and analyze the qualitative
behavior of the solutions of the two equations with respect to two different decision
sets. To study this relationship, we assume that one of the decision sets is properly
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contained in the other. Consequently, we found that, in general, there is no ordering
between the corresponding solutions with respect to the decision set. Finally, some
counter examples are presented to demonstrate this behavior.
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CHAPTER 5

Conventional numerical method

This chapter presents a detailed discussion of conventional numerical methods for solv-
ing PDE, such as the finite difference and finite element methods. The finite difference
approach forms the baseline of the deep learning method used in the next chapter.

5.1 Finite Difference Method

Although there are several numerical methods for solving differential equations [18, 58,
63], the finite difference method (FDM) is a versatile technique for solving parabolic
equations and other types of PDEs, and it forms the foundation for many numerical
solvers used in computational science and engineering. FDM has been widely used to
approximate the solutions of differential equations arising from different fields (see [63]).
The finite difference approach discretizes the continuous PDE into a set of algebraic
equations defined on a grid. It uses direct discrete points system interpretation to define
the equation and uses the combination of all the points to produce the system equation.
The mathematical formulation of FDM involves approximating the derivatives in the
differential equation using finite differences. The solution is then obtained by solving
a system of linear equations that arise from the discretization process. The specific
details of the method may vary depending on the type of differential equation and the
boundary conditions (see [58, 63]). However, the following fundamental concepts are
involved in solving parabolic equations using the finite difference approach.
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5.1.1 Fundamental Concept of FDM

The specific formulation for solving parabolic equations (e.g., heat equation) using
FDM is given as follows.

I. Discretization of the Domain: The first step in solving parabolic equations
using FDM is to discretize the spatial and temporal domains. The spatial do-
main (e.g., a physical space or a rod) is divided into a grid of points and time
domain is discretized into time steps. This creates a mesh or grid over which the
approximate solutions are computed.

II. Time Stepping: Since parabolic equations involve time evolution, a time-
stepping scheme, such as the implicit or explicit method, is chosen to update the
solution at each time step. Implicit methods typically require solving a linear
or nonlinear system of equations at each step, whereas explicit methods involve
simple algebraic operations.

III. Difference Equations: The next step is to approximate the derivatives in the
original PDE with finite difference approximations. For example, the spatial
derivative can be approximated using central differences, forward differences, or
backward differences. These approximations represent how the quantity changes
from one grid point to another in space.

IV. Initial and Boundary Conditions: Parabolic equations usually require initial
conditions (conditions at time t = 0) and boundary conditions (conditions along
the spatial boundaries). These conditions are applied to the grid points at the
initial time step and updated as the simulation progresses.

V. Time-Marching Algorithm: Then, a time-marching algorithm is used to ad-
vance the solution in time. At each time step, the values at grid points are
computed based on the previous time step’s values and the finite difference ap-
proximations. Implicit methods often involve solving linear systems (like tridi-
agonal systems), whereas explicit methods use simple update formulas.

VI. Stability and Convergence: This is the most crucial part of this technique.
For an accurate approximation, the stability and convergence of the numerical
scheme must be guaranteed. In other words, one must ensure that the numerical
scheme is stable and convergent. Stability ensures that small perturbations do
not lead to unbounded growth in the solution, and convergence guarantees that
as the grid spacing and time step decrease, the numerical solution approaches
the true solution of the PDE.
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VII. Error Analysis: In this step, the accuracy of the numerical solution is evaluated
by comparing it with the exact solution (if available) or by studying the behavior
as the grid and time step are refined. Error analysis helps in estimating the
numerical errors and improving the accuracy of the solution.

VIII. Implementation: This step involves implementing the finite difference method
in a programming environment, such as Python or MATLAB, to execute the
simulation. This is achieved by iterating through time steps until the desired
simulation time is reached, thereby monitoring the solution’s evolution.

5.2 Application to Option Pricing

In this section, we employ FDM to illustrate the numerical solution of the parabolic
equation for option pricing. As a practical example, we consider the transformed
equation (3.13), which corresponds to the classical Black-Scholes equation used in
finance for pricing options. In the transformed Cauchy equation (3.13), we consider
the case where z = 0, which means ξ = 0. We also assume that δ is a constant. For
this illustration, we shall employ the implicit scheme for the time derivative, and a
central discretization for the first order space derivative.

First, we restrict the theoretical infinite domain to the finite domain [t0, T ] ×
[L1, L2], with L1 < L2. Then, the region [t0, T ] × [L1, L2] is replaced by a discrete
grid (t0 = 0). For n = 0, 1, · · · , Nt ∈ N, define the discrete time step ∆t = T−t0

Nt

such that tn = t0 + n∆t. For i = 0, 1, · · · , Nx ∈ N, define the discrete space step
∆x = L2−L1

Nx
such that xi = L1 + i∆x. We divide the grid into equally spaced nodes

of distance ∆x and ∆t in the x- and t−axes, respectively, with the mesh points of the
form (t0 + n∆t, L1 + i∆x). At this point, we are interested in the values of u(t, x) in
the mesh nodes. We let

u(t0 + n∆t, L1 + i∆x) = uni ,

where i = 0, 1, · · · , Nx and n = 0, 1, · · · , Nt. In this simulation, our interest is to
find the value of u at time t0. The algorithm involves finding the values un given the
knowledge of the values un+1. Then, the discretized form of the parabolic equation
(3.13) becomes

un+1
i − uni
∆t

+ (r − 1

2
σ2 + δ)

uni+1 − uni−1

2∆x
+

1

2
σ2u

n
i+1 + uni−1 − 2uni

∆x2
= 0, (5.1)

where δ is a constant, as defined in equation (3.13). Here, we set δ = 0.0025. Then,
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by rearranging the terms in (5.1), we obtain

un+1
i = uni−1

(
(r − 1

2
σ2 + δ)

∆t

2∆x
− 1

2
σ2 ∆t

∆x2︸ ︷︷ ︸
a

)

+ uni

(
1 + σ2 ∆t

∆x2︸ ︷︷ ︸
b

)

+ uni+1

(
−(r − 1

2
σ2 + δ)

∆t

2∆x
− 1

2
σ2 ∆t

∆x2︸ ︷︷ ︸
c

)
.

Next, by renaming the coefficients, we have

un+1
i = auni−1 + buni + cuni+1,

which can be expressed in matrix form as follows:

un+1
1

un+1
2
...

un+1
Nx−2

un+1
Nx−1


=



b c 0 · · · 0

a b c 0 0

0
. . . . . . . . . 0

... 0 a b c

0 0 0 a b


·



un1

un2
...

unNx−2

unNx−1


+



aun0

0
...
0

cunNx


Then, the corresponding algebraic system is given by

un+1 = Dun +B,

where D is a tridiagonal metrics, and B corresponds to the boundary terms. The
algebraic system can then be solved for un by inverting the matrix D. To solve this
equation, we consider a call option with strike K at maturity T . It is worth noting
that the stock price S0 is not relevant for the algorithm and will be used to compute
the option value at S0. Next, we set L1 = log(K/3) and L2 = log(3K), which are
obtained by choosing the computational region between K/3 and 3K; un0 = 0 and
unNx

= 3K − Ke−r(T−t). For the PDE (3.13), we set δ = 0.0025. The values of the
parameter are summarized as follows. The interest rate r is set to 0.1; the volatility
σ is set to 0.2, the strike price K is set to 100; the time to expiration T is set to
1. The initial value of the stock price S0 is set to 100. These financial parameters
play a crucial role in determining the behavior of the option price. For instance, a
higher risk-free interest rate r tends to increase the present value of future cash flows,
leading to a higher option price. Conversely, a lower interest rate r has the opposite
effect. A higher volatility increases the potential price movements of the underlying
asset, which generally leads to higher option prices. An increase in the initial stock
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price generally increases the value of a call option, as there is a higher probability that
the option will end up in the money. The initial log stock price is used as a reference
point in the calculations. It influences the starting point for the option price evolution
but does not directly impact the sensitivity of the option price to changes in other
parameters. A higher strike price for a call option tends to decrease its value as the
option becomes less likely to end up in the money. The longer the time to expiration,
the higher the option price, as there is more time for the underlying asset’s price to
move in a favorable direction.

The option price is calculated backward in time, starting from the expiration time
and going back to the present. The final results are then plotted to visualize the option
price surface and its evolution over time. The option price is obtained at the initial log
stock price. Figure 5.1 shows the line plot demonstrating how the Black-Scholes model
approximates the option price compared to its payoff at the initial time. As shown in
Figure 5.1, the green dotted line corresponds to the option price, and the thick blue
line represents the payoff. The 3D surface plot illustrates a comprehensive view of how
the option price evolves over time and stock price (Figure 5.2). These visualizations
provide insight into the behavior of option prices under the Black-Scholes model. The
finite difference method allows for the estimation of option prices at different points in
time, leading up to the present.

5.3 Discussion to Chapter 5

The finite difference method (FDM) is a versatile technique for solving parabolic equa-
tions (PDEs) and other types of PDEs, and it forms the foundation for many numerical
solvers used in computational science and engineering. For several machine learning
techniques for solving differential equations, once the FDM is established, it can be
considered as a baseline for a machine learning approach. The idea is to replace the
traditional finite difference scheme with a neural network that can learn the spatiotem-
poral patterns from data. This involves training a neural network to approximate the
solution to the PDE given initial and boundary conditions. The neural network would
take spatial and temporal coordinates as input and output of the corresponding solu-
tion. Training data would consist of pairs of input-output examples generated from the
known solutions to the PDE. This approach is part of a broader field known as scientific
machine learning, where machine learning techniques are applied to scientific problems.
It is worth noting that the choice between traditional numerical methods like FDM and
machine learning approaches depends on the problem at hand, the amount of available
data, and the desired level of accuracy. Traditional methods often provide insights into
the underlying physics, while machine learning methods can handle complex, high-
dimensional data and may offer more flexibility in capturing intricate patterns. In this
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Figure 5.1: The Black-Scholes price at t = 0

thesis, the FDM approach forms the baseline of the deep learning approach used in
Chapter 6 for solving the transform parabolic equation. In this chapter, we presented a
detailed discussion of traditional numerical methods for solving PDE, such as the finite
differences and finite element methods. As a practical example, we consider the trans-
formed equation (3.13), which corresponds to the classical Black-Scholes equation used
in finance for pricing options. We employ the implicit scheme for the time derivative
and a central discretization for the first-order space derivative. The FDM technique
allows for the estimation of option prices at different points in time, leading up to the
present. The final results are then plotted to visualize the option price surface and its
evolution over time.
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CHAPTER 6

Application of Deep Learning for Solving nonlinear parabolic
PDEs

This chapter is devoted to the application of deep learning techniques to solve the
nonlinear parabolic equation (1.1). We consider the transformed part of this equation,
which corresponds to Black-Scholes and HJB equations for option pricing and portfolio
managment, respectively. Our goal is to employ physics-informed neural networks and
physics-informed DeepONet to approximate the solution of the associated transformed
parabolic equation. The main results of this chapter are contained in our paper 60

6.1 Introduction

It is well-known that several differential equations arise from many scientific and en-
gineering fields for modeling physical phenomena. However, most of these differential
equations are analytically intractable, especially in high-dimensional space. The tradi-
tional methods for solving differential equations, including the finite volume method,
finite difference method, finite element method, and spectral methods (e.g., Fourier-
spectral method) often faced different challenges. For instance, they usually require
high computational costs, and their convergence properties have not been properly
investigated. Additionally, in the numerical solution of partial differential equation
(PDE) problems through the discretization process using finite difference approxima-
tions, the algebraic systems generated are finalized using an iterative method. Al-
though these methods are efficient and well-studied, they require much memory space

60D. Ševčovič and C. I. Udeani. Learning the solution operator of a nonlinear parabolic equation
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and time, leading to high computational errors. In order to overcome these challenges,
many researchers have replaced traditional numerical discretization methods with arti-
ficial neural networks (ANNs) to approximate the PDE solution. Recently, deep neural
networks (DNNs) have been widely used to solve classical applied mathematical prob-
lems, including PDEs, utilizing machine learning and artificial intelligence approaches
[33]. Due to significant nonlinearities, convection dominance, or shocks, some PDEs
are difficult to solve using standard numerical approaches. To this end, deep learning
has recently emerged as a new paradigm of scientific computing thanks to the univer-
sal approximation theorem and great expressivity of neural networks [15]. Despite the
significant breakthrough of machine learning in science, solving differential equations
using deep learning naively usually leads to lack of interpretation, poor generaliza-
tion, and lots of training data. Although some machine learning approaches, such
as physics-informed neural networks, have proved to overcome the above challenges.
However, a slight change in the underlying parameters governing the differential equa-
tion could result in the retraining of the model. Therefore, in this chapter, we employ
the physics-informed DeepONet (PI-DeepONet) to approximate the solution operator
of a fully nonlinear partial differential equation arising from finance. PI-DeepONet
incorporates known physics into the neural network, which consists of a deep neural
network that learns the solution of the PDE and an operator network that enforces the
PDE at each iteration. As a model, we consider the HJB equation arising from the
stochastic optimization problem, where the goal of an investor is to maximize the con-
ditional expected value of the terminal utility of a portfolio. The fully nonlinear HJB
equation is first transformed into a quasilinear parabolic equation using the Ricatti
transform. Then, the solution of the transformed quasilinear equation is approximated
using PI-DeepONet.

6.2 Deep Neural Networks

6.2.1 Artificial Neural Networks

Neural networks has been widely used as function approximators, which provides a
new tool for machine learning and numerical analysis. ANNs, often called neural
networks, are computing systems based on the collection of connected units or nodes
called neurons. It consists of input, hidden, and output layers, which are connected
with sets of weights and biases. The simplest ANN is a perceptron, and a network
consisting of two or more hidden layers is called a multilayer perceptron. ANN is
a machine learning used to solve large-scale machine learning problems. Multilayer
perceptrons are the simplest ANNs, which are widely used to approximate functions.
According to recent studies, ANN can efficiently be used to approximate the PDE
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Input Layer ∈ ℝ² Hidden Layer ∈ ℝ⁶ Hidden Layer ∈ ℝ⁶ Hidden Layer ∈ ℝ⁶ Output Layer ∈ ℝ¹

Figure 6.1: Neural network architecture with two input vectors, three hidden layers
(each with six neurons), and one output vector.

solution because of its advantages, such as continuous and differentiable solutions,
good interpolation properties, and less memory-intensive. It can also break the curse
of dimensionality, which has been the shortfall of many traditional numerical methods.
Figure 6.1 shows a simple neural network architecture consisting of one input layer
(two input vectors), three hidden layers (each with six neurons), and one output layer,
which are connected in a feedforward manner.

In the neural network, each node of is called a neuron, and each neuron is a function
of all the neurons from the previous layers. Suppose the output from the previous layers
is x, and let the function of this neuron be given by h(x). Then,

h(x) = σ(wT · x+ b)

where σ is a nonlinear activation function, w and b are the weight and bias, which are
the parameters of the neural networks. The basic concept in training every neural net-
work model is to minimize these parameters. Neurons within the network collectively
create a nonlinear mapping from the input to the output. This mapping is learned
through a process known as backpropagation, which involves adjusting the weights of
each neuron. It starts at the network’s output and traverses the graph in the opposite
direction, which continues until we reach the input layer. For training the neural net-
work, a crucial component is a loss function that accepts the output vector from the
neural networks and corresponding labels or correct values, measuring the disparity
between them. Generally, the L2 loss is commonly employed as a loss function in the
context of continuous predictions. The process of updating each layer involves com-
puting the gradients of the loss function concerning the weights, which usually requires
change rule techniques.
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6.2.2 Physics-informed Neural Networks (PINNs)

PINNs are scientific machine learning techniques that can approximate PDE solutions
by training a neural network to minimize a loss function, which includes terms reflecting
the initial and boundary conditions along the space-time domain’s boundary and the
PDE residual at the collocation points. The basic concept behind PINN training is
that it can be considered an unsupervised learning that does not require labeled data,
such as results from traditional simulations or experiments [57]. The PINN algorithm
is a mesh-free technique that approximates PDE solutions by converting the problem of
directly solving the governing equations into a loss function optimization problem. It
works by integrating the mathematical model into the network and reinforcing the loss
function with a residual term from the governing equation, which acts as a penalizing
term to restrict the space of acceptable solutions. The neural network is designed
to approximate the unknown function or solution to the differential equation. The
input to the network typically includes the independent variables (e.g., time, space)
involved in the differential equation. The output represents the approximation of the
solution. The loss function consists of two main components: a data fidelity term and a
physics-informed term. The data fidelity term ensures that the neural network solution
matches the available data (if any). The physics-informed term enforces the differential
equation itself, incorporating derivatives of the network output. During training, the
neural network adjusts its parameters to minimize the combined loss function. The
optimization process seeks to find a set of parameters that simultaneously satisfy the
given data and the underlying physics described by the differential equation. The
physics-informed term in the loss function involves taking partial derivatives of the
neural network output with respect to the input variables and combining them with
the differential equation. The process of computing the derivative with respect to the
input values is carried out by automatic differentiation using exact expressions with
floating point values rather than symbolic strings. This ensures that the neural network
learns to satisfy the governing physics of the system.

Next, we discuss the approach and general implementation of PINN for solving
differential equations. Consider the general differential equation of the form:

∂u

∂t
+ F (u; γ) = 0, (6.1)

where u(x, t) is the unknown solution of the equation, x and t are spatial and temporary
variables, respectively, F denote a linear/nonlinear differential operator parameterized
by γ. For a data-driven solution, the parameter γ is fixed, and the solution is learned
using the network [57]. In contrast, in the data-driven discovery of PDEs, the network
tries to find the best parameter γ that best describes the observed data. In this chapter
of this thesis, we consider the data-driven solution technique. Since we are considering

59



the data-driven solution approach, the parameter γ is fixed. Then, for a fix γ and using
(6.1), we define the function f as

f :=
∂u

∂t
+ F (u; γ), (6.2)

where f denotes the residual. It is worth noting that the function f(x, t) and u(t, x)

have the same input parameters, i.e., x and t. This allows the incorporation of the PDE
residual into a loss function to be minimized since PINNs require further differentiation
to evaluate differential operator in the PDE. These derivatives can be easily computed
through automatic differentiation with current state-of-the-art machine learning li-
braries [57]. The parameters of u(t, x) and f(t, x) are then learned by minimizing the
corresponding loss function.

To solve such a parabolic equation using PINN, the neural network architecture
takes x and t as inputs and outputs u, the solution of the equation, as output. The
loss function consisting of the data fidelity and physics-informed parts is constructed
as follows. The data fidelity term is constructed to ensure that the neural network
solution matches the available data, usually the boundary and initial condition. Let
uobs(x

u
i , t

u
i ) denote the observed data at some specific points (xui , t

u
i ). Then, the data

fidelity term of the loss function is given with respect to mean square errors loss as

MSEu =
1

Nu

Nu∑
i=1

|upred(xui , tui )− uobs(x
u
i , t

u
i )|

2 ,

where upred(xui , tui ) denotes the predicted value evaluated at the initial and boundary
conditions (xui , tui ), and uobs(xui , tui ) denotes the function values evaluated on the initial
and boundary conditions.

The physics-informed term enforces the parabolic PDE, which involves taking par-
tial derivatives of the neural network output and combining them with the PDE. The
derivatives of the neural network can be obtained using automatic differentiation. The
MSE loss of the physics is given by

MSEf =
1

N f

Nf∑
i=1

∣∣∣f(xfi , tfi )∣∣∣2 ,
where {xfi , t

f
i }N

f

i=1 denotes the collocation points, where the PDE is been evaluated.
The total loss function is then obtained by combining the data fidelity and physics-

informed terms. Thus, PINN is trained by minimizing the following MSE loss function
using a suitable optimizer [57]

MSE =MSEu +MSEf .
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The first term ensures that the initial and boundary conditions of the PDE are
satisfied, whereas the second term encourages the PINN to learn the structural in-
formation expressed by the PDE during the training process. The neural network is
trained on a dataset that contains both the observed data and the spatial-temporal
domain of interest, and the network parameters are optimized to minimize the total
loss. This approach leverages the flexibility of neural networks to approximate the
solution to parabolic PDE while enforcing the governing physics.

Figure 6.2: Simple architecture of physics informed neural network for solving partial
differential equations [71]

6.2.3 Automatic Differentiation

To update the parameters of the deep neural networks during training, an automatic
differentiation (AD) is used. AD is a technique used in deep learning to efficiently
compute the gradients of the solutions with respect to the input parameters of the
PDEs. It allows for efficient optimization of the parameters, which in turn leads to
more accurate solutions for the PDEs. There are different approaches to using AD
for solving PDEs in deep learning. One common method is to represent the solution
of the PDE as a neural network, with the input being the parameters of the PDE
and the output being the solution. The gradients of the output with respect to the
input parameters can then be computed using AD, which can be used to optimize the
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parameters and improve the accuracy of the solution. Another approach is to use AD
to compute the gradients of the loss function with respect to the input parameters of
the PDE. This can be used in combination with numerical methods for solving PDEs,
such as finite element methods or finite difference methods, to improve the accuracy
of the solution. More specifically, AD works by computing the gradients of a function
by recursively applying the chain rule of differentiation to the sub-expressions of the
function. It is worth noting that this process can be done automatically by a computer
algorithm without requiring the user to manually derive and code the gradients. In this
thesis, we used adaptive moment estimation (Adam) and L-BFGS. Adam adapts the
learning rate of each weight based on the historical gradients. It has been widely used
for many deep learning applications because it employs the benefits of both momentum-
based and RMSProp-based methods.

6.3 Comparison between Traditional Neural Net-
work, PINNs, and and Finite Difference Ap-
proximation

In this section, we give a detailed comparison of traditional numerical methods (e.g.,
finite difference method), traditional neural networks, and PINNs. The choice between
these methods depends on factors such as problem complexity, data availability, inter-
pretability requirements, and computational resources. PINNs offer a middle ground
by combining aspects of both neural networks and traditional numerical methods, mak-
ing them particularly useful for problems where explicit physics-based constraints are
crucial. Traditional numerical methods are reliable but may lack the flexibility and
adaptability exhibited by PINNs in certain scenarios. Traditional neural networks,
while powerful, may struggle with enforcing physics constraints without explicit guid-
ance in the loss function. Table 6.1 shows a detailed comparison of the three methods.
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Feature PINNs Traditional NNs FDM
Physics
Incorporation

Embeds physics
equations in the loss

function

May not explicitly
incorporate physics

Directly solves PDEs
based on
discretization

Training Data Requires limited
training data (sparse

points)

May require a large
dataset

Does not require
data; operates on a
grid

Data Efficiency Highly data-efficient
due to physics-based

constraints

May require a large
dataset to generalize

Data-independent;
depends on grid
resolution

Mesh Independence Exhibits mesh
independence;

suitable for irregular
grids

May struggle with
irregular meshes

Grid-dependent;
regular grid often
used

Boundary
Conditions Handling

Enforces boundary
conditions during

training

Requires explicit
enforcement or

inclusion

Enforces boundary
conditions directly

Adaptability to New
Constraints

Easily adapts to
additional physics

constraints

May require
significant

architecture changes

Modifications needed
for new constraints

Interpretability Provides insights
into physical

quantities through
the loss function

Interpretability may
be challenging

Solution
interpretation is
straightforward

Computational Cost Generally
computationally

efficient

Can be
computationally

expensive, especially
for large networks

Computational cost
depends on grid size

Applicability to
Complex Geometries

Well-suited for
problems with

complex geometries

May struggle with
complex geometries

May handle complex
geometries with
refinement

Versatility Versatile across
various physical

systems

Limited to specific
problems

Versatile but may
require
problem-specific
discretization

Robustness to Noisy
Data

Resilient to noise
due to physics-based

constraints

Sensitive to noisy
training data

Sensitive to noise;
filtering techniques
used

Learning Curve Moderate learning
curve due to specific

loss formulation

Standard learning
curve for neural

networks

Steeper learning
curve due to
numerical aspects

Problem Types Well-suited for PDEs
in physics and

engineering

Applicable to a wide
range of problems

Widely used for
PDEs in various
disciplines

Table 6.1: Comparison between PINNs, traditional neural networks, and traditional
numerical methods based on PDE solution
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6.4 Application of PI-DeepONet to portfolio man-
agment

6.4.1 Methodology of PI-DeepONet

This section discusses the methodology of PI-DeepONet.
Consider the equation

F(g, ϕ) = 0, (6.3)

where F is a differential operator that denotes the governing PDE of some underlying
physics laws, g denotes the source term of the PDE, and ϕ is the solution to the PDE.
Let G be an operator between two infinite-dimensional function spaces defined by

G : g → G(g),

where g and G(g) are two functions. This mapping is called the solution operator of
the PDE (6.3), which can be evaluated at a random location y. In learning an operator
in a more general setting, the inputs usually consist of two independent parts: the
input function {g(xi)}mi=1 and the location variable (s) y. This learning can be done by
directly using traditional neural networks like feedforward neural networks, recurrent
neural networks, convolutional neural networks, or combining the two inputs as a sin-
gle network input, (i.e., {g(x1), g(x2), · · · , g(xm), y}). Meanwhile, it is not necessarily
advisable to directly use recurrent neural networks or convolutional neural networks
since the input does not have a definite structure. Therefore, it is recommended to use
feedforward neural networks as the baseline model. The DeepONet consists of two sub-
networks: branch and trunk nets. The branch net takes g, which represents a function
evaluated at a collection of fixed sensors {xi}mi=1, as the input and outputs a feature em-
bedding of q dimensions. The trunk net takes the coordinates y as the inputs and also
outputs a feature embedding of q dimensions. It is worth noting that the dimension of
y needs not be equal to that of the input function g. This indicates that g and y need
not be treated as a single network like in traditional neural networks. In general, the
DeepONet network for learning an operator takes g and y as the inputs and outputs
G(g)(y). The final output of DeepONet is obtained by combining the outputs of the
branch and trunk nets via dot product. Consequently, the physics-informed DeepONet
is trained by minimizing the following loss function over all the input-output triplets
{gi, yi, G(gi)(yi)}Ni=1

L(θ) = LOperator(θ) + LPhysics(θ), (6.4)

where LOperator(θ) = ‖Gθ(g)(y) − G(g)(y)‖2, LPhysics(θ) = ‖F [Gθ(g)](y)‖2, and F
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is the differential operator for the governing PDE of the underlying physics laws, θ
denote the set of weight matrix and bias vector in the networks. The first goal is
to find such approximator Gθ(g), but thanks to the universal approximation theorem
for the operator due to T. Chen and H. Chen [15], which guarantees the existence of
such function, i.e., Gθ(g)(y) ≈ G(g)(y) = ϕ(y) ∈ R. The final aim is to find the best
parameters that minimize the loss function (6.4) using suitable optimization techniques.
Figure 6.3 shows the schematic of DeepONet. The universal approximation theorem
for operators is given as follows:

Branch network

Trunk networky

B2

g

BN

T1

T2

TN

.

.

.

.

.

.

B1

G(g)(y)

Dot product

Figure 6.3: Schematic of DeepONet

Theorem 10. [15](Universal Approximation Theorem for Operator)
Let σ be a continuous non-polynomial function, and let X be a Banach space. Suppose
K1 ⊂ X and K2 ⊂ Rn are two compact sets, V is a compact set in C(K1), and G is
nonlinear continuous operator that maps V into C(K2). Then, for any ε > 0, there
exist positive integers, N,P, and m, constants cki ,W

k
bij, b

k
bi, btk ∈ R,Wtk ∈ Rn, xi ∈

K1, i = 1, · · · , N, k = 1, · · · , P, j = 1, · · · ,m such that

|G(g)(y)−
P∑

k=1

N∑
i=1

cki σ

(
m∑
j=1

W k
bijg(xi) + bkbi

)
︸ ︷︷ ︸

branch

· σ(Wtk · y + btk)︸ ︷︷ ︸
trunk

| < ε

for all g ∈ V and y ∈ K1, where C(Kl) are the Banach space of all continuous
functions on Kl, l = 1, 2 with the maxi-norm. Theorem 10 shows the stacked and
unstacked DeepONet. It was proved in [15] with two-layer neural networks. It is worth
noting that Theorem 10 holds when the Banach spaces C(K1) and C(K2) are replaced
with Lp(K1) and Lq(K2), p, q ≥ 1. The stacked network has one trunk net and P
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stacked branch nets, whereas the unstacked network has one trunk net and one branch
net, which are independently fully connected. For more details see, T. Chen and H.
Chen [15]. In this thesis, we use an unstacked PI-DeepONet to solve a parametric
parabolic equation arising from portfolio selection problems. Figure 6.4.1 shows the
architecture of PI-DeepONet used in this thesis.

Figure 6.4: Simple architecture of physics informed DeepONet [60]

6.4.2 Problem formulation

Let Ω = [0, T ] × [0, 1]. Our goal is to solve the following parabolic equation arising
from mathematical finance using PI-DeepONet

∂τϕ− ∂2xα(ϕ) = g(τ, x), (τ, x) ∈ Ω, (6.5)

with zero initial and boundary conditions, where ϕ(τ, x) is an unknown solution, and
g(τ, x) is the source term function of two independent variables, τ and x, which is a
parametric function that can take a wide range of values. It is worth noting that the
domain of such a source term function could be infinite functional space. In this thesis,
we consider a parabolic equation arising from an optimal control problem where the
goal of an investor is to maximize the conditional expected value of terminal utility.
It corresponds to the HJB parabolic equation (4.7), which can be obtained using a
suitable Ricatti transformation (see Chapter 4) with some shift in the main operator
(see Abe and Ishimura [1], Ishimura and Ševčovič [29], Ševčovič and Macová [45], and
Kilianová and Ševčovič [35], Ševčovič and Udeani [68]). The solution ϕ can be viewed
as the coefficient of absolute risk aversion of an investor. Without loss of generality,
we denote g = g(τ, x). To employ the PI-DeepONet, we first define an operator that
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maps the input function to the PDE solution as

G(g) = ϕ.

The novelty of DeepONet is that it takes any arbitrary source term function as the
input variables, making it more suitable than the PINN approach. Since ϕ is also a
function, we can evaluate it at some point, say y = (τ, x), to obtain G(g)(y) = ϕ(y).
Here, y = (τ, x) denotes the points in the domain where the network predicts the
solution of the PDE (6.5). In our approach, we will not use any input-output data,
rather we only use the zero boundary and initial conditions. We will approximate
the PDE solution operator G(g) using two neural networks: branch and trunk nets.
First, the input function of the branch net is discretized in a finite-dimensional space
using a finite number of points called sensors. Then, the discretized input function is
evaluated at m fixed sensors to obtain point-wise evaluations as the input function of
the branch net. The trunk net takes the spatial and temporal coordinates and evaluates
the solution operator to obtain the loss function. In general, the branch (with g as the
input function) and trunk (with y as the input variable) networks are given by

b(g(x̃)) = c · σ(Wbg(x̃) + bb), (y) = σ(Wt · y + bt)

respectively. Here, x̃ = (τ,x); c is some positive constant; σ is the activation function;
Wb and Wt represent the weight matrices of branch and trunk networks, respectively;
bb and bt represent the bias vector of the branch and trunk networks, respectively.

Now, let gi, i = 1, · · · , N , be any input function given that represents the source
term in the PDE (6.5), then the given parabolic equation (6.5) becomes

gi = ∂τϕ
i − ∂2xα(ϕ

i).

According to the approximation theorem for operators (see, Theorem 10), there exists
Gθ(g

i) such that Gθ(g
i)(y) ≈ G(gi)(y) = ϕi(y). For a fixed i, the approximator in the

DeepONet solution operator is the dot product of the outputs of the branch and trunk
networks expressed as

Gθ(g
i)(y) =

m∗∑
k=1

bk(g
i(x̃)) · tk(y),

where bk and tk, k = 1, · · · ,m∗, denote the branch and trunk networks, respectively.
Hence,

gi ≈ ∂τGθ(g
i)(y)− ∂2xα(Gθ(g

i)(y)).
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Therefore, the physics loss, LPhysics, which is calculated at the Q collocation points in
the interior of the domain where the solution operator is evaluated, is obtained as

LPhysics(θ) =
1

NQ

N∑
i=1

Q∑
j=1

|Ri
θ(y

i
r,j)− gi(xir,j)|2.

Here, Ri
θ(y

i
r,j) = ∂τGθ(g

i)(yir,j)−∂2xα(Gθ(g
i)(yir,j)) represents the residual satisfying the

underlying PDE, and yir,j = (xir,j, t
i
r,j) denotes the collocation points where the PDE is

evaluated. The estimated PDE solution operator is differentiated with respect to the
input variables using the so-called automatic differentiation.

Next, we use the zero boundary and initial conditions to obtain the second loss,
LOperators, which is expressed as

LOperator(θ) =
1

NP

N∑
i=1

P∑
k=1

|Gθ(g
i)(yig,k)−G(g

i)(yig,k)|2 (6.6)

where yig,k = (xig,k, t
i
g,k) denotes points from the initial and boundary conditions. Since

the boundary and initial conditions are zero, we have

LOperator(θ) =
1

NP

N∑
i=1

P∑
k=1

|Gθ(g
i)(yig,k)|2.

Hence, the total loss becomes

L(θ) = LPhysics(θ) + LOperator(θ). (6.7)

It follows that by minimizing the loss function (6.7) the network can effectively predict
the solution of the HJB equation.

6.5 Results and Discussion to Chapter 6

The PI-DeepONet exhibits infinitesimal optimization and generalization errors, as it
is easy to train and generalizes well to unseen data. In our approach, we did not use
any input-output data, rather we only used the zero boundary and initial conditions.
We approximate the PDE solution operator using branch and trunk nets. As a test
example, we consider the diffusion function α(ϕ) = ϕ2. First, the input function of the
branch net is discretized in a finite-dimensional space using a finite number of points
called sensors. Then, the discretized input function is evaluated at fixed sensors to
obtain point-wise evaluations. The trunk net takes the spatial and temporal coordi-
nates and evaluates the solution operator to obtain the loss function. To generate our
training data, we randomly sample N = 500 source term functions as input functions

68



of the trunk net from a zero mean Gaussian process with an exponential quadratic
kernel having a 0.2-length scale. The kernel function defines the covariance between
two points in the process as a function of the distance between them. The parameter
l > 0 determines how quickly the covariance between two points decays as the distance
between them increases. In this study, we set l = 0.2. A smaller length scale results in
a higher correlation between nearby points, whereas a larger length scale results in a
lower correlation between nearby points. Then, the selected input functions are evalu-
ated at m = 100 points as input sensors. The m outputs of the source term functions
are sent to the branch network. Next, we select the P = 100 output sensors from the
initial and boundary conditions, which are sent to the trunk nets. Our operator is then
approximated by computing the dot product between the branch and trunk networks,
and the corresponding operator loss is computed. After that, we select Q = 100 col-
location points inside the domain, and the error related to the underlying physics is
computed. Finally, the total loss is evaluated by combining the two losses, which are
minimized using the Adam optimizer with a learning rate of 10−3. Similarly, the test
set is generated using the same approach. In Fig. 6.1, we compare a solution obtained
by a physics-informed DeepONet method using the Relu activation function for 10000
iterations with a numerical solution constructed by means of the semi-implicit finite
difference numerical method.

The PI-DeepONet exhibits infinitesimal optimization and generalization errors since
it is easy to train and generalizes well to unseen data. In our simulation, we used the
L2 error, and its value is 6.14× 10−4. We used the Adam optimizer, which can easily
track the global minimum, with a learning rate of 10−3.
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Figure 6.5: Comparision of a PI-DeepONet solution and the numerical solution obtained by
the finite difference method (FDM numerical solution). The right-hand side represents the
input function g [60].
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CHAPTER 7

Concluding Remarks and Prospects

This thesis aimed to investigate the qualitative and quantitative analysis of fully non-
linear nonlocal partial integro-differential equations (PIDEs) of parabolic type arising
from financial mathematics. First, we studied the existence and uniqueness of solutions
of nonlinear PIDEs arising from financial markets in multidimensional spaces. Such a
PIDE models the well-known Black-Scholes equation for pricing call/put option. We
relaxed and generalized some of the existing assumptions on the Black-Scholes model.
The existence and uniqueness of solutions to the PIDEs was established in the scale
of Bessel potential spaces using the theory of abstract semilinear parabolic equations.
The novelty of this result is the generalization of existing results in one dimension to
the multidimensional case. We considered a wide class of admissible Lévy measures sat-
isfying suitable growth conditions near the origin and infinity. We investigate solutions
to the nonlocal equation in which the shift function may depend on a prescribed large
investor stock-trading strategy function. The Hölder estimate, which plays a crucial
for proving the main result of the theorem, was also presented. Moreover, a general
shift function arising from a nonlinear option pricing model taking into account a large
trader stock-trading strategy was considered to demonstrate its application to option
pricing in one-dimensional space.

Second, we investigated the existence and uniqueness of a solution to a fully non-
linear HJB equation arising from optimal portfolio management. The HJB equation
represents a stochastic optimization problem, where the goal of an investor is to max-
imize the conditional expected value of the terminal utility of the portfolio. The non-
linear HJB equation was first transformed into a qausilinear parabolic equation. The
existence and uniqueness of the solution to the transformed Cauchy problem was then
proved in high-dimensional spaces. We employed the monotone operator technique,
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Fourier transform approach, and Banach’s fixed point theorem to obtain the existence
and uniqueness of the solution to the general form of the transformed parabolic equa-
tion in Sobolev spaces. The existence results are based on the properties of the value
function of the parametric programming, which gives sufficient conditions (under cer-
tain assumptions) on the utility function, drift function, and volatility function for
establishing our existence results. We also established the necessary and sufficient
conditions on the utility function, drift function, and volatility function for the proof
of our existence and uniqueness results. Furthermore, the relationships between the
decision set and the corresponding solutions to the HJB equation with respect to the
two decision sets are discussed. Specifically, we analyzed the qualitative behavior of
the solutions of the two equations with respect to two different decision sets.

Furthermore, we presented a detailed discussion of traditional numerical methods
for solving PDE, such as the finite differences, which form a baseline for our application
of deep learning. As a practical illustration, we considered the transformed equation
(3.13), which corresponds to the classical Black-Scholes equation used in finance for
pricing options. We employed the implicit scheme for the time derivative and a central
discretization for the first-order space derivative. The FDM technique allows one to
estimate option prices at different points in time, leading up to the present. Finally
we adopted a physics-informed DeepONet to approximate the solution operator of a
parametric parabolic equation arising from portfolio selection problems. The input
function of the branch net was discretized in a finite-dimensional space using a fixed
number of sensors. The discretized input functions were evaluated at fixed sensors to
obtain point-wise evaluations. The operator was approximated by computing the dot
product between the branch and trunk networkss, and the corresponding operator loss
was computed. We applied PI-DeepONet to solve the nonlinear parabolic equation
obtained from the HJB equation.

In future studies, we will employ the PIDE approach to establish the existence
and uniqueness solution to the fully nonlnear HJB parabolic equation. Here, we will
consider an optimal control problem involving intertemporary utility. We will establish
a suitable relationship between a fully nonlinear HJB and Black-Scholes equation for
option pricing. Additionally, we will establish a suitable numerical scheme for solving
the fully nonlinear PIDE and PDE of parabolic type in higher-dimensional space.
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CHAPTER 8

Appendices

This chapter presents the proof of the main results arising from the thesis. We note
here that these results and their proofs are contained in our recent publications (see
Ševčovič and Udeani [68, 62], as well as J. Cruz, M. Grossinho, D. Ševčovič, and C.
Udeani [32]. Appendix A contained the proof of results in Chapter 3, and Appendix B
contains the proofs of our results in Chapter 4.

8.1 Appendix A

In this section, we present the proofs of our main results, which are contained in our
paper (see Ševčovič and Udeani [62]).

8.1.1 Proof of Propositions 1

Proof. Let u ∈ X be such that ∇xu ∈ (Xγ−1/2)n, i.e., ∂xi
u ∈ Xγ−1/2 for each i =

1, · · · , n. Then ∇xu = A−(2γ−1)/2ϕ = G2γ−1 ∗ ϕ for some ϕ ∈ (Lp(Rn))n, and
‖∇xu‖Xγ−1/2 = ‖A(2γ−1)/2∇xu‖X = ‖ϕ‖Lp . Here, ϕ = (ϕ1, · · · , ϕn) and ∂xi

u =

G2γ−1 ∗ ϕi. Let x, ξ ∈ Rn. Then

∇xu(x+ ξ) = G2γ−1(x+ ξ − ·) ∗ ϕ(·), ∇xu(x) = G2γ−1(x− ·) ∗ ϕ(·).

Recall that the convolution operator satisfies the following inequality:

‖ψ ∗ ϕ‖Lp(Rn) ≤ ‖ψ‖Lq(Rn)‖ϕ‖Lr(Rn),
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where p, q, r ≥ 1 and 1/p + 1 = 1/q + 1/r (see [27, Section 1.6]). In particular, for
q = 1 we have ‖ψ ∗ ϕ‖Lp ≤ ‖ψ‖L1‖ϕ‖Lp . For the modulus of continuity of the Bessel
potential function Gα, α ∈ (0, 1), the following estimate holds:

‖Gα(·+ h)−Gα(·)‖L1 ≤ C0|h|α,

for any h ∈ Rn (c.f., [67, Chapter 5.4, Proposition 7]). Let ξ1, ξ2 be bounded vector
valued functions, i.e., ξ1, ξ2 ∈ (L∞(Rn))n. Then, for any x ∈ Rn and θ ∈ [0, 1], we have

u(x+ ξ1(x))− u(x+ ξ2(x))− (ξ1(x)− ξ2(x)) · ∇xu(x)

= u(x+ ξ1(x))−∇xu(x) + ξ1(x) · ∇xu(x)

−[u(x+ ξ2(x))−∇xu(x)− ξ2(x) · ∇xu(x)]

= (ξ1(x)− ξ2(x))

∫ 1

0

∇xu(x+ ξ1(x))−∇xu(x)dθ

+

∫ 1

0

∇xu(x+ θξ1(x))−∇xu(x+ θξ2(x))dθ .

Now,

‖Q(u, ξ1)−Q(u, ξ2)‖pLp(Rn)

=

∫
Rn

|u(x+ ξ1(x))− u(x+ ξ2(x))− (ξ1(x)− ξ2(x)) · ∇xu(x)|pdx

≤
∫
Rn

∣∣∣∣(ξ1(x)− ξ2(x))

∫ 1

0

∇xu(x+ θξ1(x))−∇xu(x)dθ

∣∣∣∣p dx
+

∫
Rn

∣∣∣∣ξ2(x)∫ 1

0

∇xu(x+ θξ1(x))−∇xu(x+ θξ2(x))dθ

∣∣∣∣p dx
≤ ‖ξ1 − ξ2‖p∞

∫ 1

0

∫
Rn

|∇xu(x+ θξ1(x))−∇xu(x)|pdxdθ

+‖ξ2‖p∞
∫ 1

0

∫
Rn

|∇xu(x+ θξ1(x))−∇xu(x+ θξ2(x)|pdxdθ

≤ ‖ξ1 − ξ2‖p∞
∫ 1

0

‖ (G2γ−1(·+ θξ1)−G2γ−1(·)) ∗ ϕ‖pLpdθ

+‖ξ2‖p∞
∫ 1

0

‖ (G2γ−1(·+ θξ1)−G2γ−1(·+ θξ2)) ∗ ϕ‖pLpdθ

≤ ‖ξ1 − ξ2‖p∞
∫ 1

0

‖G2γ−1(·+ θξ1)−G2γ−1(·)‖pL1dθ‖ϕ‖pLp

+‖ξ2‖p∞
∫ 1

0

‖G2γ−1(·+ θξ1)−G2γ−1(·+ θξ2)‖pL1dθ‖ϕ‖pLp

≤
(
‖ξ1 − ξ2‖p∞‖ξ1‖(2γ−1)p

∞ + ‖ξ2‖p∞‖ξ1 − ξ2‖(2γ−1)p
∞

)
Cp

0‖∇xu‖pXγ−1/2

≤ ‖ξ1 − ξ2‖(2γ−1)p
∞

(
‖ξ1‖p∞ + ‖ξ2‖(2−2γ)p

∞ ‖ξ1‖(2γ−1)p
∞ + ‖ξ2‖p∞

)
Cp

0‖∇xu‖pXγ−1/2 .
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By Young’s inequality, we have ab ≤ aα

α
+ bβ

β
for any a, b ≥ 0, and α, β > 1 with

1/α + 1/β = 1 (c.f., [13]). Set α = 1/(2 − 2γ), β = 1/(2γ − 1). Then, 1/α + 1/β = 1

and we obtain ‖ξ2‖(2−2γ)p
∞ ‖ξ1‖(2γ−1)p

∞ ≤ (2−2γ)‖ξ2‖p∞+(2γ−1)‖ξ1‖p∞ ≤ 2‖ξ2‖p∞+‖ξ1‖p∞.
Therefore,

‖Q(u, ξ1)−Q(u, ξ2)‖pLp(Rn) ≤ 2‖ξ1 − ξ2‖(2γ−1)p
∞ (‖ξ1‖p∞ + ‖ξ2‖p∞)Cp

0‖∇xu‖pXγ−1/2

≤ 2Cp
0‖ξ1 − ξ2‖(2γ−1)p

∞ (‖ξ1‖∞ + ‖ξ2‖∞)p‖∇xu‖pXγ−1/2 .

Hence, the pointwise estimate holds with the constant Ĉ = 21/pC0 > 0.

8.1.2 Proof of Proposition 2

Proof. The Lévy measure ν(dz) is given by ν(dz) = h(z)dz. Let us denote the auxiliary
function h̃(z) = |z|αh(z). Then, 0 ≤ h̃(z) ≤ C0e

−D|z|−µ|z|2 . Since h(z) = |z|−αh̃(z) =

h1(z)h2(z), where h1(z) = |z|−βh̃(z)
1
2 and h2(z) = |z|β−αh̃(z)

1
2 . Applying Proposition 2

with ξ1 = ξ, ξ2 = 0, and using the Hölder inequality, we obtain

‖f(u)‖pLp =

∫
Rn

∣∣∣∣∫
Rn

(u(x+ ξ(x, z))− u(x)− ξ(x, z) · ∇xu(x))h(z)dz

∣∣∣∣p dx
≤

∫
Rn

∫
Rn

|u(x+ ξ(x, z))− u(x)− ξ(x, z) · ∇xu(x)|p h1(z)pdz

×
(∫

Rn

h2(z)
qdz

)p/q

dx

=

∫
Rn

(∫
Rn

|u(x+ ξ(x, z))− u(x)− ξ(x, z) · ∇xu(x)|p dx
)
h1(z)

pdz

×
(∫

Rn

h2(z)
qdz

)p/q

≤ Cp
0‖∇xu‖pXγ−1/2

∫
Rn

|ξ(x, z)|2γp|z|−βph̃(z)p/2dz

(∫
Rn

h2(z)
qdz

)p/q

≤ Cp
0‖∇xu‖pXγ−1/2

∫
Rn

|z|(2γω−β)ph̃(z)p/2dz

(∫
Rn

h2(z)
qdz

)p/q

.

Assuming p, q ≥ 1, 1/p+ 1/q = 1 are such that

(2γω − β)p > −n, (β − α)q = (β − α)
p

p− 1
> −n,

then, the integrals
∫
Rn |z|(2γω−β)ph̃(z)p/2dz and

∫
Rn h2(z)

qdz =
∫
Rn |z|(β−α)qh̃(z)q/2dz

are finite, provided that the shape parameters satisfy: either µ > 0, D ∈ R, or µ =

0, D > D0 ≥ 0. As γ > (α− n)/(2ω), there exists β > 1 satisfying

α− n+ n/p < β < 2γω + n/p.
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Therefore, there exists C0 > 0 such that ‖f(u)‖Lp ≤ C0‖∇xu‖Xγ−1/2 .

8.1.3 Proof of Theorem 5

Proof. First, we outline the idea of the proof. The initial condition u(0, ·) 6∈ Xγ because
of two reasons. It is not smooth for x = 0, and it grows exponentially for x→ ∞ (call
option) or x→ −∞ (put option). The shifted function U = u−uBS satisfies U(0, ·) ≡ 0,
and so the initial condition U(0, ·) belongs to Xγ. On the other hand, the shift function
uBS enters the governing PIDE as it includes the term f(uBS(τ, ·)) in the right-hand
side. Since uBS(0, x) is not sufficiently smooth for x = 0, the shift term f(uBS(τ, ·))
is singular for τ → 0+. Following the ideas of [18], for the shift term f(uBS(τ, ·)), we
can provide Hölder estimates which are sufficient for proving the main result of this
theorem (c.f., [18, Lemma 4.1]). Furthermore, the exponential growth of the function
uBS will be overcome since f̃(ex) = 0, where f̃(u) = f(u)− δ(τ, ·)∂xu, i.e.,

f̃(u)(x) =

∫
R

(
u(x+ ξ)− u(x)− (eξ − 1)∂xu(x)

)
ν(dz).

Next, we present more details of the proof. The function uBS solves the linear PDE
(3.14). Thus, the difference U = u−uBS of a solution u to (3.13) and uBS satisfies the
PIDE with the right-hand side:

∂U

∂τ
=

σ2

2

∂2U

∂x2
+

(
r − σ2

2
− δ(τ, x)

)
∂U

∂x
+ f(U) + f(uBS)− δ(τ, x)

∂uBS

∂x

=
σ2

2

∂2U

∂x2
+ f(U) + g(τ, x, ∂xU) + h(τ, ·),

U(0, x) = 0, x ∈ R, τ ∈ (0, T ). Here g(τ, x, ∂xU) = (r − σ2/2 − δ(τ, x))∂xU , and
h(τ, ·) = f̃(uBS(τ, ·)). According to Proposition 2, f : Xγ → X is a bounded linear
mapping. Consequently, it is Lipschitz continuous, provided that 1/2 ≤ γ < 1 and
γ > (α− 1)/(2ω). Clearly, f̃(ex) = 0. Hence,

f̃(uBS) = f̃(uBS −Kerτ+x), and ∂τ f̃(u
BS) = f̃(∂τ (u

BS −Kerτ+x)).

Now, it follows from [18, Lemma 4.1] that the following estimate holds true:

‖h(τ1, ·)− h(τ2, ·)‖Lp = ‖f̃(uBS(τ1, ·))− f̃(uBS(τ2, ·))‖Lp ≤ C0|τ1 − τ2|−γ+ p+1
2p ,

‖h(τ, ·)‖Lp = ‖f̃(uBS)(τ, ·))‖Lp ≤ C0|τ
−(2γ−1)

(
1
2
− 1

2p

)
,

for any 0 < τ1, τ2, τ ≤ T . The function h : [0, T ] → X ≡ Lp(R) is ((p + 1)/(2p) − γ)-

75



Hölder continuous because γ < p+1
2p

. Moreover,

∫ T

0

‖h(τ, ·)‖Lpdτ =

∫ T

0

‖f̃(uBS(τ, ·))‖Lpdτ ≤ C0

∫ T

0

τ
−(2γ−1)

(
1
2
− 1

2p

)
dτ <∞,

because (2γ − 1)
(

1
2
− 1

2p

)
< 1. We recall that the crucial part of the proof of [18,

Lemma 4.1] was based on the estimates:

‖f̃(uBS(τ, ·))‖Lp ≤ C0‖v(τ, ·)‖Xγ−1/2 , and ‖∂τ f̃(uBS(τ, ·))‖Lp ≤ C0‖∂τv(τ, ·)‖Xγ−1/2 ,

where v(τ, x) = ∂x
(
uBS(τ, x)−Kerτ+x

)
= Kerτ+x(N(d1(τ, x)) − 1). This estimate is

fulfilled because of Proposition 2 under the assumptions made on γ. The proof for
the case of a put option is similar. The final estimate on the Hölder continuity of the
mapping h follows from careful estimates of the solution uBS derived in the proof of
[18, Lemma 4.1]. The proof now follows from Theorem 4 and Proposition 2.

8.2 Appendix B

In this section, we present the proofs of our main results, which are contained in the
paper (see Ševčovič and Udeani [68]).

8.2.1 Proof of Theorem 6

Proof. Recall that H = L2(Rd) and V = H1(Rd), its dual space being V ′ = H−1(Rd).
Let the scalar products in V and V

′ be defined as follows:

(f, g)V = (A1/2f, A1/2g)H = (Af, g)H , (f, g)V ′ = (A−1/2f, A−1/2g)H = (A−1f, g)H ,

respectively. Let us define the operator A(τ, ·) : V → V ′ by

〈A(τ, ϕ), ψ〉 = (A−1Aα(·, τ, ϕ), ψ)H = (α(·, τ, ϕ), ψ)H .

Under the assumption made on the function α we can conclude that the mapping
ϕ 7→ α(·, τ, ϕ) maps V into V . Indeed, if ϕ ∈ V and η = α(·, τ, ϕ) then η(x) =

α(x, τ, ϕ(x))− α(x, τ, 0) + α(x, τ, 0) and so

|η(x)| ≤ (max
ϕ

α′
ϕ(x, τ, ϕ))|ϕ(x)|+ |h(x, τ)| ≤ L|ϕ(x)|+ |h(x, τ)|.

Thus,
∫
Rd |η(x)|2dx ≤ 2

∫
Rd L

2|ϕ(x)|2 + |h(x, τ)|2dx ≤ 2L2‖ϕ‖2H + 2‖h(·, τ)‖2H . Since
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∇η(x) = ∇xα(x, τ, ϕ(x)) + α′
ϕ(x, τ, ϕ(x))∇ϕ(x), we have

‖η‖2V =

∫
Rd

|η(x)|2 + |∇η(x)|2dx

≤2

∫
Rd

L2|ϕ(x)|2 + |h(x, τ)|2dx+ 2

∫
Rd

|p(x, τ)|2 + L2
0|ϕ(x)|2dx+ 2

∫
Rd

L2|∇ϕ(x)|2dx

≤2(L2‖ϕ‖2V + ‖h(·, τ)‖2H + ‖p(·, τ)‖2H + L2
0‖ϕ‖2H) <∞,

because p, h ∈ L∞((0, T );H). Consequently, η ∈ V , as claimed.
Next, we show that the operator A is monotone in the space V ′. According to

(4.17) we have (α(x, τ, ϕ1) − α(x, τ, ϕ2))(ϕ1 − ϕ2) ≥ ω(ϕ1 − ϕ2)
2, for any ϕ1, ϕ2 ≥

ϕmin, x ∈ R, τ ∈ [0, T ].

〈A(τ, ϕ1)−A(τ, ϕ2), ϕ1 − ϕ2〉 = (α(·, τ, ϕ1)− α(·, τ, ϕ2), ϕ1 − ϕ2)

=

∫
Rd

(α(x, τ, ϕ1(x))− α(x, τ, ϕ2(x)))(ϕ1(x)− ϕ2(x))dx

≥
∫
Rd

ω|ϕ1(x)− ϕ2(x)|2dx = ω‖ϕ1 − ϕ2‖2H .

This implies that the operator A(τ, ·) is strongly monotone.
For a given ϕ̃ ∈ H, we have f̂ ∈ V ′, where f̂(τ) = g0(τ, ϕ̃(·, τ)) +∇ · g1(τ, ϕ̃(·, τ)),

because g0, g1j : [0, T ] × H → H are globally Lipschitz continuous, H ↪→ V ′, and the
operator ∇ maps H into V ′. The hemicontinuity, boundedness, and coercivity of the
operator A follows from the assumption that α is globally Lipschitz continuous and
strictly increasing.

Applying Theorem 3, we deduce the existence of a unique solution ϕ ∈ V such that

∂τϕ+A(τ, ϕ) = f̂(τ), ϕ0 ∈ H, (8.1)

where A(τ, ϕ) = Aα(·, τ, ϕ). Next, we multiply (8.1) by A−1 to obtain

∂τA
−1ϕ+ α(·, τ, ϕ) = f, (8.2)

where f = f(τ, ϕ̃) = A−1f̂(τ). For τ ∈ [0, T ], we denote f̃(ϕ̃) = A−1/2f̂(τ) =

A−1/2g0(τ, ϕ̃) + A−1/2
∑d

j=1 ∂xj
g1j(τ, ϕ̃). For the Fourier transform of f̃ , we have

̂̃f(ϕ̃)(ξ) = 1

(1 + |ξ|2)1/2
ĝ0(τ, ϕ̃)(ξ) +

d∑
j=1

(−iξj)
(1 + |ξ|2)1/2

̂g1j(τ, ϕ̃)(ξ).

Let β > 0 be the Lipschitz constant of the mappings g0, g1j, j = 1, · · · , d. Using

77



Parseval’s identity and Lipschitz continuity of g0, g1j in H, we obtain, for ϕ̃1, ϕ̃2 ∈ H,

‖f̃(ϕ̃1)− f̃(ϕ̃2)‖2H = ‖̂̃f(ϕ̃1)−̂̃f(ϕ̃2)‖2H =

∫
Rd

|̂̃f(ϕ̃1)(ξ)−̂̃f(ϕ̃2)(ξ)|2dξ

≤ 2

∫
Rd

1

1 + |ξ|2
| ̂g0(τ, ϕ̃1)(ξ)− ̂g0(τ, ϕ̃2)(ξ)|2

+
d∑

j=1

|ξ|2

1 + |ξ|2
| ̂g1j(τ, ϕ̃1)(ξ)− ̂g1j(τ, ϕ̃2)(ξ)|2dξ

≤ 2‖ ̂g0(τ, ϕ̃1)− ̂g0(τ, ϕ2)‖2H + 2
d∑

j=1

‖ ̂g1j(τ, ϕ̃1)− ̂g1j(τ, ϕ2)‖2H

= 2‖g0(τ, ϕ̃1)− g0(τ, ϕ̃2)‖2H + 2
d∑

j=1

‖g1j(τ, ϕ̃1)− g1j(τ, ϕ̃2)‖2H

≤ β̃2‖ϕ̃1 − ϕ̃2‖2H ,

where β̃2 = 2(1 + d)β2. Hence, we obtain

‖f̃(ϕ̃1)− f̃(ϕ̃2)‖H ≤ β̃‖ϕ̃1 − ϕ̃2‖H . (8.3)

Suppose ϕ1, ϕ2 ∈ H are such that ϕ1 = F (ϕ̃1) and ϕ2 = F (ϕ̃2). Here, the map
F : H → H is defined by ϕ = F (ϕ̃), where ϕ is a solution to the Cauchy problem

∂τA
−1ϕ+ α(·, τ, ϕ) = f(τ, ϕ̃), ϕ(0) = ϕ0.

Letting ϕ = ϕ1 − ϕ2 = F (ϕ̃1)− F (ϕ̃2), we obtain

∂τA
−1(ϕ1 − ϕ2) + α(·, τ, ϕ1)− α(·, τ, ϕ2) = f(ϕ̃1)− f(ϕ̃2). (8.4)

Next, we multiply (8.4) by ϕ1−ϕ2 and take the scalar product in the space H to obtain

(∂τA
−1(ϕ1 − ϕ2), ϕ1 − ϕ2) + (α(·, τ, ϕ1)− α(·, τ, ϕ2), ϕ1 − ϕ2)

= (f(τ, ϕ̃1)− f(τ, ϕ̃2), ϕ1 − ϕ2). (8.5)

Using (8.3) and the fact that A−1/2 is self-adjoint in H, then (8.5) gives

1

2

d

dτ
‖A−1/2(ϕ1 − ϕ2)‖2H + ω‖ϕ1 − ϕ2‖2H

≤ 〈f(τ, ϕ̃1)− f(τ, ϕ̃2), ϕ1 − ϕ2〉 = 〈A1/2(f(τ, ϕ̃1)− f(τ, ϕ̃2)), A
−1/2(ϕ1 − ϕ2)〉

≤ ‖A1/2(f(τ, ϕ̃1)− f(τ, ϕ̃2))‖H‖ϕ1 − ϕ2‖V ′ = ‖f̃(ϕ̃1)− f̃(ϕ̃2)‖H‖ϕ1 − ϕ2‖V ′

≤ β̃‖ϕ̃1 − ϕ̃2‖H‖ϕ1 − ϕ2‖V ′ .
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This implies

1

2

d

dτ
‖ϕ1 − ϕ2‖2V ′ + ω‖ϕ1 − ϕ2‖2H ≤ β̃‖ϕ̃1 − ϕ̃2‖H‖ϕ1 − ϕ2‖V ′ .

Then, integrating on a small time interval [0, T ] from 0 to t and noting that ϕ1(0) =

ϕ2(0) = ϕ0, we obtain

1

2
‖ϕ1(τ)− ϕ2(τ)‖2V ′ + ω

∫ τ

0

‖ϕ1(s)− ϕ2(s)‖2Hds

≤ β̃

∫ τ

0

‖ϕ̃1(s)− ϕ̃2(s)‖H‖ϕ1(s)− ϕ2(s)‖V ′ds

≤ β̃ max
τ∈[0,T ]

‖ϕ1(τ)− ϕ2(τ)‖V ′

∫ T

0

‖ϕ̃1(τ)− ϕ̃2(τ)‖Hdτ.

Taking the maximum over τ ∈ [0, T ] and using the fact that for any a, b ∈ R, ab ≤
1
2
a2 + 1

2
b2, we obtain

1

2
( max
τ∈[0,T ]

‖ϕ1(τ)− ϕ2(τ)‖V ′)2 + ω

∫ T

0

‖ϕ1(τ)− ϕ2(τ)‖2Hdτ

≤ β̃ max
τ∈[0,T ]

‖ϕ1(τ)− ϕ2(τ)‖V ′

∫ T

0

‖ϕ̃1(τ)− ϕ̃2(τ)‖Hdτ

≤ 1

2
( max
τ∈[0,T ]

‖ϕ1(τ)− ϕ2(τ)‖V ′)2 +
β̃2

2
(

∫ T

0

‖ϕ̃1(τ)− ϕ̃2(τ)‖Hdτ)2.

Using the Cauchy–Schwartz inequality, we obtain ω
∫ T

0
‖ϕ1(τ)−ϕ2(τ)‖2Hdτ ≤ β̃2

2

∫ T

0
dτ
∫ T

0
‖ϕ̃1(τ)−

ϕ̃2(τ)‖2Hdτ = β̃2T
2

∫ T

0
‖ϕ̃1(τ)− ϕ̃2(τ)‖2Hdτ. This implies that

‖F (ϕ̃1)− F (ϕ̃2)‖2H ≤ β̃2T

2ω
‖ϕ̃1 − ϕ̃2‖2H.

Thus, for T sufficiently small such that β̃2T
2ω

< 1, the operator F is a contraction on
the space H; therefore by the Banach fixed point theorem, F has a unique fixed point
in H. It is worth noting that β̃ and ω are given such that they are independent of
T . If T > 0 is arbitrary, then we can apply a simple continuation argument. Indeed,
if the solution exists in (0, T0) interval with β̃2T0

2ω
< 1, then starting from the initial

condition ϕ0 = ϕ(T0/2) we can continue the solution ϕ from the interval (0, T0) over
the interval (0, T0) ∪ (T0/2, T0/2 + T0) ≡ (0, 3T0/2). Continuing in this manner, we
obtain the existence and uniqueness of a solution ϕ ∈ H defined on the time interval
(0, T ).

Finally, the solution belongs to the space V because the right-hand side, i.e., the
function f̂(τ) = g0(τ, ϕ(·, τ)) + ∇ · g1(τ, ϕ(·, τ)) belongs to V ′. Applying Theorem 3,
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we conclude ϕ ∈ V , as claimed.

8.2.2 Proof of Theorem 7

Proof. Since f̂ ∈ V ′, where f̂ = g0+∇·g1 and A(τ, ϕ) ∈ V ′, then ∂τϕ ∈ V ′. Therefore,
for each ϕ0 ∈ H, we have ϕ ∈ W where W is the Banach space W = {ϕ, ϕ ∈ V , ∂τϕ ∈
V ′}. According to [66, Proposition 1.2], we have W ↪→ C([0, T ];H). Hence, the unique
solution ϕ to the Cauchy problem belongs to the space C([0, T ];H), as claimed.

Next, we show that the unique solution satisfies a-priori energy estimate (4.15). Let
ϕ be a unique solution to the Cauchy problem (4.14). Multiply (8.2) by ϕ and take
the scalar product in H to obtain

(∂τA
−1ϕ, ϕ)H + (α(·, τ, ϕ), ϕ)H = (A−1g0(τ, ϕ) + A−1∇ · g1(τ, ϕ), ϕ). (8.6)

Using the Lipschitz continuity of g0, g1 and strong monotonicity of α, we obtain

1

2

d

dτ
‖ϕ‖2V ′ + ω‖ϕ‖2H = (∂τA

−1ϕ, ϕ) + ω‖ϕ‖2H
≤ (∂τA

−1ϕ, ϕ) + (α(·, ϕ)− α(·, 0), ϕ)

= (A−1(g0(·, ϕ) +∇ · g1(τ, ϕ))− α(·, 0), ϕ)

= (A−1(g0(·, ϕ)− g0(·, 0) +∇ · g1(·, ϕ)−∇ · g1(·, 0)), ϕ)

+(A−1(g0(·, 0) +∇ · g1(·, 0)), ϕ)− (α(·, 0), ϕ)

= (A−1/2(g0(·, ϕ)− g0(·, 0) +∇ · g1(·, ϕ)−∇ · g1(·, 0)), A−1/2ϕ)

+(A−1/2(g0(·, 0) +∇ · g1(·, 0)), A−1/2ϕ)− (α(·, 0), ϕ)

≤ β(1 + d)‖ϕ‖H‖ϕ‖V ′ + ‖A−1/2(g0(·, 0) +∇ · g1(·, 0))‖H‖ϕ‖V ′

+‖α(·, 0)‖H‖ϕ‖H

≤ ω

4
‖ϕ‖2H +

β2(1 + d)2

ω
‖ϕ‖2V ′ +

1

2
‖A−1/2(g0(·, 0) +∇ · g1(·, 0))‖2H

+
1

2
‖ϕ‖2V ′ +

1

ω
‖α(·, 0)‖2H +

ω

4
‖ϕ‖2H .

Hence, there exist constants C0, C1 > 0 such that

d

dτ
‖ϕ‖2V ′ + ω‖ϕ‖2H ≤ C1‖ϕ‖2V ′ + C0

(
‖g0(·, 0)‖2H +

d∑
j=1

‖g1j(·, 0)‖2H + ‖α(·, 0)‖2H
)
.

Solving the differential inequality y′(τ) ≤ C1y(τ) + r(τ), where y(τ) = ‖ϕ(·, τ)‖2V ′ and
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r(τ) = C0

(
‖g0(·, τ, 0)‖2H +

∑d
j=1 ‖g1j(·, τ, 0)‖2H + ‖α(·, τ, 0)‖2H

)
, yields

y(τ) ≤ eC1T
(
y(0) +

∫ T

0

r(s)ds
)
,

and the proof of the Theorem follows.

8.2.3 Proof of Theorem 8

Proof. Since σ2(θ) > 0 and 4 is a compact set, there exist constants 0 < ω ≤ L such
that 0 < ω ≤ σ2(θ) ≤ L for all θ ∈ 4. It follows from Proposition 3 that

ω|ϕ| ≤ |α(x, ϕ)− α(x, 0)| ≤ L|ϕ|. (8.7)

Since ϕ0, h ∈ L∞(R) and h(x) = α(x, 0), we obtain M := supx∈R |α(x, ϕ0(x))| <∞.
Let us define the shifted diffusion function by α̃(x, ϕ) = α(x, ϕ) − α(x, 0). Notice

that α(x, 0) = minθ∈4−µ(x,θ) = h(x). Then equation (4.16) is equivalent to

∂τϕ+ Aα̃(·, ϕ) = α̃(·, ϕ) + ∂2xh− ∂x (α(·, ϕ)ϕ) ,

where A = I − ∂2x.
Next, let g0(ϕ) = α̃(·, ϕ) + ∂2xh and g1(ϕ) = −w(α(·, ϕ))ϕ. Here, w : R → R is a

suitable cut-off function

w(α) =


ψeλT , if α ≤ ψeλT ,

α, if ψeλT < α < ψeλT ,

ψeλT , if α ≥ ψeλT ,

where ψ = M,ψ = −M . Then, the functions g0, g1 : H → H are globally Lipschitz
continuous.

Notice that the diffusion function α̃ fulfills assumptions of Theorem 6 with h̃(x) =
α̃(x, 0) ≡ 0. Now, applying Theorems 6 and 7, we obtain the existence and uniqueness
of a solution ϕ ∈ C([0, T ];H) ∩ L2((0, T );V ) to the Cauchy problem (4.14). The solu-
tion ϕ satisfies the point-wise estimate (4.15). Hence, w(α(x, ϕ(x, τ))) = α(x, ϕ(x, τ))

and ϕ is a solution to the Cauchy problem (4.16), as well.
Finally, from (8.7), we deduce the L∞((0, T )×R) estimate for the solution ϕ since

supx∈R |α(x, ϕ(x, τ))| ≤ Meλτ , where λ = supx∈R p(x). Furthermore, ϕ ∈ L∞((0, T ) ×
R), and

sup
x∈R,τ∈[0,T ]

|ϕ(x, τ)| ≤ ω−1(MeλT +max
x∈R

|h(x)|).
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8.2.4 Proof of Proposition 3

Proof. Let us define αθ(x, τ, ϕ) := −µ(x, t,θ) + ϕ
2
σ(x, t,θ)2, where t = T − τ . Then

α(x, τ, ϕ) = min
θ∈4

αθ(x, τ, ϕ) .

For any given θ ∈ 4, the function αθ(x, τ, ϕ) is globally Lipschitz continuous in all
variables. The minimal function α is therefore globally Lipschitz continuous as well.
Moreover, the function αθ(x, τ, ϕ) satisfies the inequality (4.17) for any θ ∈ 4, and so
does the minimal function α.

Next, we prove inequality (4.18). Let x1, x2 ∈ Rd such that x2 = x1 + hei, where
ei, i = 1, · · · , d, is the standard normal vector, i.e., ei = (0, 0, ..., 0, 1, 0, ..., 0)T . We have
that

αθ(x1, τ, ϕ)− αθ(x2, τ, ϕ) = −(µ(x1, τ,θ)− µ(x2, τ,θ)) +
ϕ

2
(σ(x1, τ,θ)

2 − σ(x2, τ,θ)
2)

=

∫ h

0

(−∂xi
µ(x1 + ξei, τ,θ))dξ +

∫ h

0

ϕ

2
∂xi
σ2(x1 + ξei, τ,θ)dξ

≤
∫ h

0

|∂xi
µ(x1 + ξei, τ,θ))|dξ +

∫ h

0

|ϕ|
2
|∂xi

σ2(x1 + ξei, τ,θ)|dξ

≤ max
θ∈4,0≤ξ≤h

|∂xi
µ(x1 + ξei, τ,θ)|h+ max

θ∈4,x∈Rd
|∂xi

σ2(x, τ, θ)| |ϕ|
2
h.

Hence,

αθ(x1, τ, ϕ) ≤ αθ(x2, τ, ϕ)+ max
θ∈4,0≤ξ≤h

|∂xi
µ(x1+ξe

i, τ,θ)|h+ max
θ∈4,x∈Rd

|∂xi
σ2(x, τ, θ)||ϕ|h.

We note that x2 − x1 = hei so that |x2 − x1| = h. Taking minimum over θ ∈ 4, we
obtain

α(x1, τ, ϕ) ≤ α(x2, τ, ϕ)+ max
θ∈4,0≤ξ≤h

|∂xi
µ(x1+ ξe

i, τ,θ)|h+ max
θ∈4,x∈Rd

|∂xi
σ2(x, τ, θ)||ϕ|h.

Exchanging the role of x1 and x2 and taking the limit as x2 → x1, i.e., h → 0, we
obtain inequality (4.18), as stated.
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